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Micro-bends are frequently encountered in micro-electro-mechanical systems as a basic unit of com-
plex geometry. It is essential for a deep understanding of the rarefied gas flow through bent channels.
In this paper, a two-dimensional pressure-driven gas flow in a micro-channel with two bends is inves-
tigated by solving the Bhatnagar-Gross-Krook kinetic equation via the discrete velocity method in
the slip and transition flow regimes. The results show that the mass flow rate (MFR) through the bent
channel is slightly higher than that in the straight channel in the slip flow regime but drops significantly
as the Knudsen number increases further. It is demonstrated that the increase in MFR is not due to
the rarefaction effect but due to the increase in cross section of the bent corners. As the rarefaction
effect becomes more prominent, the low-velocity zones at the corners expand and the gas flow is
“squeezed” into the inner corner. The narrowed flow section is similar to the throttling effect caused
by the valve, and both the changes in MFRs and the pressure distribution also confirm this effect. The
classical Knudsen minimum changes due to this “rarefaction throttling effect.” The Knudsen number
at which the minimum MFR occurs gradually increases with the bend angle and finally disappears
in the transition flow regime. In addition, the onset of rarefaction throttling effect shifts to a smaller
Knudsen number with a lower tangential momentum accommodation coefficient. Published by AIP
Publishing. https://doi.org/10.1063/1.5037430

I. INTRODUCTION

Micron-sized devices fabricated by micro-electronic fab-
rication processes are the major components in the micro-
electromechanical system (MEMS), including microsensors,
micro-turbines, and micro-fuel cells.1,2 Due to the features
of miniaturization and sophistication, a typical micro-device
often contains high-density microchannel networks,3,4 which
are composed of hundreds to thousands of channels. The typ-
ical length scale of these microchannels ranges from a few
hundred to a few microns, sometimes even to sub-micron.
Due to the design limitation, channels with bends are encoun-
tered in most of the miniaturized devices. For instance, a
microheat exchanger generally uses a serpentine channel con-
taining many bends to keep the device efficient and com-
pactable.5 Therefore, the study of gas flows through complex
micro-channels has great practical importance. Over the years,
systematic understanding of internal rarefied gas flows has
attracted attention in both the experimental and theoretical
research.6–9 So far, gas flows in straight microchannels have
been investigated extensively. However, the research work for
the flow in channels with bends, to the authors’ best knowl-
edge, is very limited. As the emergence of bend could lead to
some new and counter-intuitive phenomena, e.g., the mass flow
rate (MFR) might increase in bent channels,5,10–12 a detailed

a)Author to whom correspondence should be addressed: ghtang@mail.
xjtu.edu.cn

investigation on the bending effect in gas flows through micro-
channels would be significantly helpful for the design of
MEMS.

In most of the miniaturized devices, the mean free path
of gas molecules λ is of the same order as or even larger than
the system characteristic flow length H.1 When H decreases to
significantly less than λ, the ratio of these two lengths, which is
defined as the Knudsen number (Kn = λ/H), may become rela-
tively large. Under such circumstances, theories derived from
the continuum assumption including the conventional Navier-
Stokes equations do not work.13 This is due to the fact that the
shear stress and heat flux in the fluid dynamic models cannot
be simply expressed in terms of the lower-order macroscopic
quantities. A number of rarefied effects have been revealed
in rarefied gas flows, including the velocity slip,14 tempera-
ture jump,15 Knudsen paradox,16 and thermal transpiration.17

However, how the complex structures in micro-channels affect
the gas flow remains less investigated. By using the integrated
pressure sensors, experiments of gas flow in microchannels
with complicated geometries have been reported in the liter-
ature.18–20 Lee et al. investigated the MRFs and the pressure
distributions in three different bend configurations including
the miter, curved, and double-bent microchannels.18 Their
results showed that additional pressure drops are induced by
bends and the MFR in double-bent channels is reduced to about
90% of the one in the straight channel. Varade et al. con-
ducted experiments for nitrogen gas flows through a tube with
a single bend in the continuum flow and early slip regimes
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(0.0003 < Kn < 0.0385).20 It was found that the flow sepa-
ration near the corner causes a large pressure drop at small
Knudsen numbers while the influence gradually decays as the
Knudsen number increases. However, these studies are limited
to the flow regimes with small Knudsen numbers. Besides, to
measure the small MFR of highly rarefied low-speed gas flow,
a large pressure ratio is necessary to drive the gas flow, which
makes it expensive and difficult to conduct an experiment in
incompressible limit.

Due to the constraint in experiments, an efficient numer-
ical simulation for gas flows at micro-scale has received
widespread attention and been improved with significant
progress. When the Navier-Stokes equations break down,
the Boltzmann equation for the velocity distribution function
(VDF) of gas molecules, which is derived based on the gas
kinetic theory, is a fundamental way to describe the rarefied
gas dynamics.21 The Direct Simulation Monte Carlo (DSMC)
method22 is widely used for the numerical solution of the
Boltzmann equation. By using a set of simulated particles each
of which could represent a great number of real gas molecules,
the DSMC method phenomenologically mimics the streaming
and binary collisions of molecules, as well as the gas-boundary
interactions in the computational domain. It has been applied
to investigate the MFRs and the pressure distributions in bent
channels under different Mach numbers and Reynolds num-
bers,12,23,24 where the flow field and the pressure distribution
along the bend are found to be similar to those in the straight
channel, except for some differences near the corner of the
bend. Although White et al.12 attributed such discrepancies
to the change of rarefied effect, Rovenskaya5 showed that
the differences are still present with a fixed Knudsen num-
ber and gradually become significant when the Mach number
increases. This indicates that the local influence of the bend
is due to the gas compressibility. Besides, when both the total
length and the pressure difference between the inlet/outlet are
the same, it is found that the MFR along the bent channel is
slightly higher than that in the straight channel in the near-
continuum flow regime,12 but the difference disappears when
the Knudsen number increases.10,11

Although the DSMC method has been successfully
applied to a wide range of problems in rarefied gas dynam-
ics, the statistical feature of the particle method makes it
very inefficient in simulating low-speed flows,25 which is fre-
quently encountered in micro-systems. When gas velocity is
far smaller than the most probable speed of gas molecules,
the deterministic numerical simulation approaches relying on
the discrete velocity method (DVM) are attractive alternatives
to solve the Boltzmann equation.26 These methods adopt a
set of discrete velocities to represent the continuous molec-
ular velocity space. Then the VDFs which are discrete in the
velocity space but continuous in the spatial space are solved by
conventional computational fluid dynamic methods.27–29 Gen-
erally speaking, for the solution of highly rarefied gas flow, a
large number of discrete velocities are required in order to
capture non-equilibrium effects precisely.30,31 In practice, a
deterministic solution is commonly sought for the gas kinetic
models that reduce the complicated collision operator in the
Boltzmann equation to a simpler collision relaxation term; one
frequently used is the Bhatnager-Gross-Krook (BGK) kinetic

equation,32 which has been proven to be sufficiently accurate
on many fundamental issues such as the gas slider bearing
problem,33 Knudsen paradox,34 etc.

One of the interesting problems in rarefied gas dynam-
ics, i.e., the Knudsen minimum or Knudsen paradox, draws
attention for years due to its important applications to the
micro-machines and other devices with tiny air gap.35,36 This
phenomenon was first observed by Knudsen37 in experiments
of Poiseuille flow driven by the identical pressure drop in the
channels with varying widths. Although it has been extensively
studied in both experimental and theoretical analyses, the
research that focuses on how the geometry of the microchan-
nels affect the gas flow is quite limited. Sharipov and Graur38

investigated the rarefied gas flow through a zigzag channel by
using the linearized kinetic equation and found that the aspect
ratio of the channel affects MFRs while the underlying reason
behind it is still unknown. Besides, the effect of accommoda-
tion coefficient of the bounding surfaces, which could affect
the MFR significantly,39 awaits to be studied under complex
geometries. As a benchmark of the gas flow problem in com-
plex geometry, the gas flow in a bent channel is a good starting
point to help us seek fundamental understanding of the flow
mechanism.

Therefore, the aim of this paper is to investigate the effect
of the bend on the behavior of a pressure-driven flow in the slip
and transition flow regimes by using deterministic solutions of
the linearized BGK equation. The geometry of the bent channel
is introduced in Sec. II, and the linearized BGK equation as
well as the numerical scheme is briefly described in Sec. III.
The influences of the bend on the pressure-driven gas flow
and the corresponding mechanisms are discussed in Sec. IV.
Finally, conclusions are given in Sec. V.

II. FORMULATION OF THE PROBLEM

As shown in Fig. 1, we consider a two-dimensional
pressure-driven gas flow through a micro-channel with two
bends in a Cartesian coordinate system x(x, y). The micro-
channel is divided into three segments equally: the front and
rear segments of the channel are horizontal, while the middle
one connected to the other two parts by corners is located with
a sloping direction. The length of each part is L/3, where L is
the total flow length and L′ is the channel length in the x direc-
tion. The bend angle θ, which is defined as the angle between
the direction of the middle segment and the x direction, varies
from 0◦ to 90◦. To easily implement boundary condition in the
Cartesian coordinates, the stair-step grid method is employed
to approximate the inclined channel walls. The width of the
channel H = 1. The ratio of the total length L to the width of
the channel H is set to 13.5, while the solid surfaces of the
channel extend to infinity in the direction perpendicular to the
x-y plane, so the problem is effectively two-dimensional.5,40–42

Due to the fact that the material of silicon, which is commonly
used for micron-sized devices, is a good heat conductor, the gas
flow in the micro-channel could be considered isothermal.13

In this work, the gas flow is driven by the pressure difference
between the inlet/outlet of the channel and we are interested
in the influence of bend on the MFR at various Knudsen
numbers.
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FIG. 1. Schematic of a two-dimensional
micro-channel with two bends. The
dashed line A-A1 represents the center-
line of the microchannel, while the cross
sections B-B and C-C represent the sec-
tions away from the corner and at the
corner, respectively.

III. GAS KINETIC THEORY AND NUMERICAL SCHEME
A. The gas kinetic theory

The Boltzmann equation, which describes the evolution
of the VDF in dependence of the molecular velocity, spatial
position, and time evolution, is valid for the entire range of
Knudsen numbers. In this paper, we use the following form
of the BGK equation instead of the full Boltzmann equa-
tion.32 The BGK equation in the two-dimensional spatial space
and the two-dimensional velocity space could be written in
terms of Cartesian coordinates

∂f
∂t

+ v ·
∂f
∂x
=

p
µ

(
feq − f

)
, (1)

feq =
ρ0

2πRT
exp

(
−

(v − u)2

2RT

)
, (2)

where f (t, x, v) denotes the VDF, v = (vx, vy) denotes the
molecular velocity, x = (x, y) denotes the spatial coordinate,
p denotes the gas pressure, ρ0 denotes the reference density,
and µ denotes the shear viscosity of the gas. Note that physi-
cally, the VDF is defined in the three-dimensional molecular
velocity space; however, for isothermal problems, the VDF
can be reduced to two-dimensional velocity space. We have
tested that this does not affect the flow velocity or shear
stress.34

For the numerical solution of the system, it is convenient to
normalize all the variables and function. Without losing gen-
erality, the following non-dimensional variables are defined
as

x̂ =
x
H

, t̂ =
t

H/
√

2RT0
, û =

u
√

2RT0
, v̂ =

v
√

2RT0
,

ρ̂ =
ρ

ρ0
, p̂ =

p
p0

,∆p̂ =
∆p
p0

, T̂ =
T
T0

, f̂ =
f

ρ0/2RT0
,

(3)

where u = (ux, uy) is the macroscopic velocity, R is the specific
gas constant, T is the gas temperature, T0 is the reference
temperature, and H is the characteristic flow length. Note that
the symbol hat denotes the dimensionless value in this paper.
The Knudsen number is defined as

Kn =
λ

H
=
µ(T0)
pH

√
πRT0

2
, (4)

where λ is the mean free path of the gas molecules, which is
related to its shear viscosity µ and the average pressure p̄ at the
reference temperature. Then, the non-dimensional form of the
BGK equation and the Maxwell velocity distribution function
becomes

∂ f̂

∂̂t
+ v̂ ·

∂ f̂
∂x̂
=

√
π

2Kn

(
f̂eq − f̂

)
, (5)

f̂eq =
ρ̂

πT̂
exp

(
−

(v̂ − û)2

T̂

)
. (6)

Macroscopic quantities of the gas flow could be obtained
from the velocity moments of the velocity distribution func-
tion. Thus, the non-dimensional forms of density, velocity, and
temperature are calculated as follows:

ρ̂ =

∫
f̂dv̂, (7)

ρ̂û =
∫

v̂f̂dv̂, (8)

ρ̂T̂ =
2
3

∫
(v̂ − û)2 f̂dv̂. (9)

Equation (5) must be combined with the boundary con-
dition that determines the interaction of gas/surface when gas
molecules collide with the wall surface. Here, the Maxwellian
diffuse reflection boundary condition is used.43 Suppose that
the solid surface is static with a temperature of T0, for v ·n > 0
(n represents the outward unit normal vector of the wall), the
VDF for the molecules reflected by the wall is written as

f̂ (x̂, v̂) = α
ρ̂w

π
exp

(
−|v̂|2

)
+ (1 − α)f̂ (x̂, v̂ − 2[v̂ · n]n), (10)

where α represents the tangential momentum accommodation
coefficient (TMAC).44 This boundary condition assumes that,
when colliding with solid surface, 1 − α parts of the molecules
are specularly reflected, while the rest are diffusively reflected.
Purely diffuse or specular reflection corresponds to the cases
of α = 1 and 0, respectively. ρ̂w is given by
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ρ̂w = 2
√
π

∫
v̂′ ·n<0

|v̂′ · n| f
(
x̂, v̂′

)
dv̂′, (11)

to guarantee that the mass flux across the solid surface equals
to zero.

B. The linearized BGK equation

When the pressure gradient is small, namely, |L∆p/pdx |
� 1, and the gas flow velocity is much smaller than the most
probable molecular speed vm =

√
2RT0 in micro-flows, the

VDF f̂ could be linearized about the global equilibrium state
Êeq as follows:

f̂ = Êeq(1 + h), Êeq = exp
(
−|v̂|2

)
/π, (12)

where the perturbation VDF h(t, x, v) is governed by the
following linearized BGK equation:38,45

∂h

∂ t̂
+ v̂ ·

∂h
∂x̂
= L(ñ, û, τ) −

√
π

2Kn
h, (13)

L(ñ, u, τ) =

√
π

2Kn

[
ñ + 2û · v̂ + τ

(
|v̂|2 −

3
2

)]
, (14)

where the perturbed number density, the flow velocity, and the
perturbed temperature are calculated as follows:

ñ ≡ ρ̂ − 1 =
∫

hÊeqdv̂, (15)

ρ̂û =
∫

v̂hÊeqdv̂, (16)

τ = T̂ − 1 =
2
3

∫
(v̂)2hÊeqdv̂ − ñ. (17)

The linearized form of the gas kinetic boundary condi-
tions is given below. The periodic-pressure-driven boundary
conditions are applied along the x direction at the inlet (x = 0)
and outlet (x = L′),38

h
(
0, y, vx, vy

)
= B + h

(
L′, y, vx, vy

)
, when v̂x > 0

h
(
L′, y, vx, vy

)
= −B + h

(
0, y, vx, vy

)
, when v̂x < 0,




(18)

where B is the perturbed pressure constant and∆p̂ = ∫ BÊeqdv̂
is the perturbed pressure difference.

While on the upper and lower solid surfaces, the linearized
form of diffuse-specular boundary condition is written as43

h(x̂, v̂) =
2α
√
π

∫
v̂′ ·n<0

��v̂′ · n��h
(
x̂, v̂′

)
exp

(
−��v̂′��2

)
dv̂′

+ (1 − α)h(x̂, v̂ − 2[v̂ · n]n). (19)

When the gas flow reaches the steady state, the dimen-
sionless MFRs of the pressure-driven flow are calculated by
Q= ∫

1
0 ρ̂ûx/∆p̂dŷ = Q0/

(√
2RT ρ0∆p̂H

)
with Q0 = ∫

H
0 ρuxdy.

C. The discrete velocity method

In the DVM, the molecular velocity space v is represented
by a set of discrete velocities. In this work, Nv non-uniform

points are used to discretize the molecular velocity in each
direction,30

v̂x,y =
v̂max

(Nv − 1)3
(−Nv + 1, − Nv + 3, . . . , Nv − 1)3, (20)

where the discrete velocities are distributed in a square of
[−4, 4]2 with v̂max = 4 and are refined near v̂x ,y = 0. This
method of choosing the discrete velocities rather than the
Gauss-Hermite quadrature has been proven efficient in sim-
ulations of micro/nano-scale gas flow, especially in capturing
the rapid variations in the VDF at larger Knudsen num-
bers.34 Finally, Eq. (13) is solved by the following iterative
method:

√
π

2Kn
h( j+1) + v̂ ·

∂h( j+1)

∂x̂
= L

(
ñ( j), û( j), τ( j)

)
, (21)

where the scripts ( j) and ( j + 1) denote two consecutive itera-
tion steps. Here, we omitted the derivation with respect to the
time since we are only interested in the steady-state solution.
The spatial derivatives are approximated by a second-order
upwind finite difference scheme, and the iteration is termi-
nated when the relative error of the macroscopic velocity û
between the two consecutive iteration steps is less than 10−10.

D. Multiple-relaxation-time lattice Boltzmann method

Because the spatial mesh is required to be smaller than
the mean free path, the DVM becomes time-consuming in the
near continuous flow regime.30,34 For comparison, we use the
Multiple-Relaxation-Time Lattice Boltzmann Method (MRT-
LBM)46 with zero velocity-slip boundary condition to simulate
gas flow in the continuum flow regime. Under the assumption
that the flow speed is small, the MRT-LBM is proven to be
equivalent to solving the Navier-Stokes equations in the near-
incompressible limit for single phase flow through complex
geometries47 and has been extended for multiphase flow sim-
ulations successfully.48,49 The two-dimensional-nine-velocity
(D2Q9) LBM with a multiple-relaxation-time collision oper-
ator can be written as50,51

fi
(
t + δ,~x +~viδt ,~vi

)
− fi

(
t,~x,~vi

)
= −

(
M−1SM

)
ij

[
fj − feq,j

]
.

(22)

Here { f i(t,~x,~vi):i = 0, 1, . . ., 8} are the discrete dis-
tribution VDF at time t and position x associated with the
discrete velocities {~vi:i = 0, 1, . . ., 8} defined by ~v0 = (0,0),
~v1 = −~v3 = (1,0)c, ~v2 = −~v4 = (0,1)c, ~v5 = −~v7 = (1,1)c, and
~v6 = −~v8 = (−1,−1)c, where c = δx/δt with δx being the lattice
spacing and δt being the time step. M is a 9 × 9 invertible
transformation matrix projecting the discrete VDF f i onto the
moment space,

M =

*................
,

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

+////////////////
-

, (23)
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and S = diag(τ0, τ1, . . ., τ8)−1 is a non-negative diago-
nal matrix with τi being the relaxation time for the ith
moment. feq ,i is the discrete equilibrium distribution function
given by

feq,i = ρwi


1 +

~vi · ~u

cs
2

+
(
~vi · ~u

)2

2cs
4

+
~u · ~u

2cs
2


, (24)

where w0 = 4/9, w1-4 = 1/9, w5-9 = 1/36, cs = c/
√

3 is the sound
speed, and ρ and u are the density and velocity, respectively,
defined as

ρ =
∑

i

fi, ρu =
∑

i

~vi fi. (25)

The half-way bounce-back scheme is employed to enforce
the no-slip boundary condition at the solid surface by reflect-
ing VDF from the boundary nodes back into the direction of
incidence.52,53

IV. INFLUENCE OF THE BEND IN MICRO-CHANNEL
GAS FLOW

In this section, we assess the influence of bend on the
pressure-driven gas flows in micro-channels. The MFRs are
calculated for the Knudsen number ranging from 0.01 to 10,
spanning over the slip and transition flow regimes. The con-
vergence study is performed for both the straight and bent
channels to determine the grids in the velocity and spatial
spaces. The numbers of discrete points used in the x and
y directions are 2700 and 200, respectively. To capture the
discontinuities in the distribution function at large Knudsen
numbers, v̂x and v̂y are discretized by Eq. (20) with Nv = 34
non-uniform points in each direction. Further refinement of
the spatial mesh and discrete velocities would change the
results by less than 1%. In addition to the MFR, we are also
interested in the pressure distribution, dimensionless velocity

magnitude U =

√
ûx

2 + ûy
2/∆p̂, velocity contours, and the

streamlines.

A. The bend effect on the Knudsen minimum effect

Figure 2 shows the change of MFRs with respect to the
Knudsen number in the micro-channels with the same total
length L, but different bend angles θ. As shown in Fig. 2(a), for
the straight channel (θ = 0), the MFR decreases to a minimum
value at first and then increases slightly with a further increase
in the Knudsen number, which is called the Knudsen minimum
or Knudsen paradox.37 The results from Cercignani et al.35 are
also included as presented in red solid circles. For the MFR
in the straight channel, the present DVM solution agrees well
with that from Cercignani with less than 0.5% error.

When gas flows through the bent channels with different
bend degrees, one can find that the MFRs in the bent channel
are slightly higher than those in the straight one for small Knud-
sen numbers. However, when the Knudsen number increases,
this slight increment soon disappears and the MFRs drop below
the profile in the straight channel significantly. Moreover, the
difference between the MFRs in the straight and bent channels
enlarges as the bend angle increases. The relative deviation of
the MFRs between the bent and straight channels is shown in
Fig. 2(b). When Kn = 0.05, 0.5, and 5.0, the MFRs are equal
to 4.208, 1.477, and 1.303 for the bent channel with θ = 90◦,
while for the straight channel, the MFRs is 4.149, 1.578, and
1.851, respectively. This implies that two bends of 90◦ cause
1.39% increment and 6.43% and 29.59% drops in MFRs as
compared to that of the straight channel at Kn = 0.05, 0.5, and
5.0, respectively.

Note that the Knudsen number corresponding to the mini-
mum MFR changes as the bend angle increases. Table I shows
the minimum MFR and the corresponding Knudsen num-
ber with different bend angles. It is clear that an increase in
the bend angle leads to a larger Knudsen number at which
the minimum MFR occurs. Specifically, the minimum point
appears at Kn = 0.8 in the straight channel, but for θ = 6◦,
26◦, 45◦, the location shifts to Kn = 0.90, 1.47, and 3.19,
respectively. Furthermore, for the bend angle of 90◦, the
Knudsen minimum in the whole transition flow regimes
even disappears, which means that the MFR monotonically

FIG. 2. (a) The dimensionless mass flow rate Q and (b) the relative deviation (Qbend − Qstraight)/Qstraight between the straight and bent channels with bend
angles θ = 6◦, 14◦, 26◦, 35◦, 45◦, and 90◦. Note that Q is obtained from the DVM solution of the linearized BGK equation and the semi-analytical results from
Cercignani, Lampis, and Lorenzani35 are labeled as “Cercignani et al.”
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TABLE I. Minimum MFRs and corresponding Knudsen numbers for differ-
ent bend angles, θ.

Bend angle, θ (deg) Kn Mass flow rate

0 0.89 1.544
6 0.90 1.457
14 1.05 1.423
26 1.47 1.366
35 2.10 1.334
45 3.19 1.332
90 . . . . . .

decreases without any increase. This reduction of MFRs indi-
cates that the rarefied effect combined with an increase in
the bend angle leads to an apparent local resistance in the
channel.

B. The change of the velocity field under
different flow regimes

To understand how the bend affects the flow field in differ-
ent flow regimes, we plot the normalized velocity magnitude
U/Umean-AA1 along the centerline of the micro-channel with
θ = 90◦ (the dotted line A-A1 in Fig. 1) at three different
Knudsen numbers in Fig. 3, where Umean-AA1 is the average
velocity magnitude along the centerline A-A1. It can be found
that, for the same Knudsen number, the values of U/Umean-AA1

are nearly the same along the channel but only fluctuate vio-
lently around the bend corners. Also, the normalized velocity
profiles are roughly the same at the bend corner under different
Knudsen numbers. The result appears to be consistent with the
previous findings in Refs. 5 and 10–12 which argue that bends
only affect the flow field locally and the sharp decrease of the
normalized velocity reflects the influence of the corner. How-
ever, the reason of this sudden change in the velocity magnitude
along the centerline is mainly due to the fact that the direction
of the mainstream deviates from the centerline at the corner.
As shown in Fig. 4, the streamlines and the velocity magnitude

FIG. 3. The normalized velocity magnitude U/Umean-AA1 along the center-
line of the bent channel with θ = 90 for Kn = 0.05, 0.5, and 5.0. Umean-AA1
is the average velocity magnitude along the centerline under the correspond-
ing Knudsen numbers, and l represents the distance from the inlet along the
centerline.

FIG. 4. Streamlines and contours of the velocity magnitude at the corner.

contour at the corner indicate that the mainstream fluid
flows through the bend along the arc direction (direction 1)
rather than the centerline (direction 2). Therefore, the fluctu-
ation of the velocity magnitude shown in Fig. 3 could only
reflect the deviation between the velocity along the centerline
and the one along the mainstream, but not the influence of the
bent corner on the flow field.

We further discuss the velocity magnitude U and the
normalized velocity magnitude U/Umean at different cross
sections of the bent channel with θ = 90◦. Figure 5 shows
the velocity magnitude U and the normalized velocity mag-
nitude U/Umean-BB at l/L = 0.15 (section B-B in Fig. 1),
where Umean-BB is the average velocity magnitude in the
B-B section under the corresponding Knudsen numbers. It
can be seen that, due to the relatively far distance from the
bend corner, the velocity profiles present symmetrical parabo-
las. As shown in Fig. 5(a), the velocity magnitude in the
channel is almost the same as that in the straight one at
Kn = 0.05. However, with the increase of the rarefaction effect,
the velocity of the bend channel drops to lower than that of
the straight one, and the reduction becomes quite evident at
Kn = 5.0. Although the difference between the velocity mag-
nitudes becomes significant, the profiles of the normalized
velocity magnitude in the bent channel shown in Fig. 5(b) are in
good agreement with those in the straight channel under differ-
ent Knudsen numbers. This indicates that the flow pattern does
not change, but only the MFR drops as compared to the straight
channel.

Figure 6 shows the magnitude of the velocity U and the
normalized velocity U/Umean-CC in the cross section at cor-
ner (see section C-C in Fig. 1) under three different Knudsen
numbers, where Umean-CC is the average velocity magnitude
along the C-C section under the corresponding Knudsen num-
bers. It can be found that, due to the constraint of the cor-
ner, the velocity profile is no longer a symmetrical parabolic
as in the straight channel, and the maximum velocity moves
towards the inner wall at y/H = 0. Moreover, it is noted that the
location of the maximum velocity varies at different Knudsen
numbers. When Kn = 0.05, the maximum velocity appears at
y/H = 0.218, and as the Knudsen number increases to 0.5
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FIG. 5. (a) Velocity magnitude U and (b) normalized velocity magnitude U/Umean-BB at l/L = 0.15 (section B-B in Fig. 3) in the bent channel with θ = 90◦ for
Kn = 0.05, 0.5, and 5.0. Umean-BB is the average velocity magnitude in the B-B section under the corresponding Knudsen numbers. y represents the distance
from the upper wall along the vertical direction.

FIG. 6. (a) Velocity magnitude U and (b) normalized velocity magnitude U/Umean-CC at the center cross section (section C-C in Fig. 1) of the bent channel with
θ = 90◦ for Kn = 0.05, 0.5, and 5.0. Umean-CC is the average velocity magnitude in the C-C section under the corresponding Knudsen numbers. y represents the
distance from the upper wall along the section.

and 5.0, the location changes to y/H = 0.090 and y/H = 0.038,
respectively. This indicates that the gas flow is squeezed into
the corner of the inner wall and the velocity near the outer wall
(the wall on the side of y/H = 1.0) is significantly reduced as
the Knudsen number increases.

C. The enhancement and reduction of MFR
at different Knudsen numbers

As shown in Fig. 2, in a small Knudsen number regime,
the MFR through the bent channel is higher than that in the
straight one. Some researchers tried to find out the underlying
reasons in detail. Agrawal et al. attributed this slight increment
in MFR to the numerical error,10 while Rovenskaya5 and White
et al.12 explained that this is attributed to the increase in the
local Knudsen number at the inner corner tip, which leads to the
increase in the local slip velocity and decrease in the local shear
stress. To investigate gas flow in the near continuum flow, we
use the Multiple-Relaxation-Time Lattice Boltzmann Method

(MRT-LBM) to calculate the same problem with zero velocity-
slip boundary condition in the incompressible limit. By using
the MRT-LBM to calculate the gas flow through the bent

FIG. 7. The ratio of Qbend and Qstraight in the near continuum and slip flow
regimes.
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FIG. 8. The pressure difference (pbend − pstraight)/pin along the centerline
for Kn = 0.05, 0.5, and 5.0. l represents the distance from the inlet along
the centerline and pin is the inlet pressure, while pbend and pstraight are the
pressures along the centerlines of the bent and straight channels, respectively.

channel in the continuum flow regime, we also find a slight
increase of the MFR in the bent channel compared to the
straight one. As shown in Fig. 7, the values of Qbend/Qstraight

are equal to 1.031, 1.022, and 1.014 when Kn ≈ 0 (MRT-LBM
result), 0.01, and 0.05 (DVM results), respectively. To further
elucidate the enhancement of MFR in the bent channel, we
also plot the relative pressure difference (pbend − pstraight)/pin

along the centerline direction in Fig. 8, where pin is the inlet
pressure, while pbend and pstraight are the pressures along the
centerlines of the bend and straight channels, respectively.
When the Knudsen number is relatively small (Kn = 0.05),
the pressure before the corner is slightly lower than that in the
straight channel, while the pressure after the corner is slightly
higher. This pressure distribution is quite similar to the one
in the channel which contains the expansion part.54 There-
fore, the increased cross section at the corner plays a role like
an expansion tube, which leads to the result that the MFR is
larger than that in the straight channel. So this slight increment
in MFR is caused by the increasing cross section at the corner
instead of the rarefied gas effect.

As the Knudsen number increases, the rarefaction effect
tends to dominate, which triggers a variety of counter-
intuitive phenomena. One of them is called the Knudsen

minimum where the dimensionless MFR in Poiseuille flow
could increase when the gas pressure decreases.4 This is a
paradoxical behavior because, based on the Navier-Stokes
equations, one would expect the mass flux to decrease with
the increasing Knudsen number. Whereas if the MFR in a
straight long channel is plotted over the Knudsen number,
a distinct minimum is observed around Kn = 0.8. The bal-
ance of two competing effects could explain the mechanism
behind this intuitively: on the one hand, the imposed pres-
sure gradient gradually penetrates the bulk flow field through
gas-gas and gas-surface collisions. As the Knudsen number
rises, the interaction between the gas molecules are weak-
ened, which could be characterized as the increase of viscosity
qualitatively and thus the MFRs drop; on the other hand, as
the rarefaction effect becomes evident, the impact of the col-
lisions between gas molecules and solid surfaces gradually
become dominant. Thus the slip velocity in the Knudsen layer
(the gas layer of a few mean free paths to the wall) becomes
large, which eventually helps increasing the MFR. The com-
bination of the two mechanisms induces the existence of the
Knudsen minimum in the Poiseuille flow inside a straight
channel.

However, when there is a corner in the channel, the col-
lision and rebound direction between the gas and the wall
changes. This leads to that the slip velocity inside the Knudsen
layer is no longer parallel to the main flow direction, which
may disturb and even slow down the mainstream gas flow. To
further reveal the mechanism for the change of the Knudsen
minimum effect, we plot the normalized velocity magnitude
U/Umax and the flow streamline in the bent channel with
θ = 90◦ at three different Knudsen numbers in Fig. 9, where
Umax is chosen as the maximum magnitude of the velocity
under the corresponding Knudsen number in the whole flow
field. It is seen that the flow fields are similar under different
Knudsen numbers, except for the contour near the corner. The
smooth streamlines through the corner indicate that no vortices
or flow separations happen for such low-speed flows.38,55 For
the sake of convenient comparison, Fig. 10 illustrates the con-
tour of the normalized velocity magnitude U/Umax at the first
corner by using the maximum magnitude of velocity as the
reference. It is shown that the contour line of the velocity at
the bend is concave, as if the flow is squeezed by the cor-
ner. This effect aggravates with an increase in the Knudsen

FIG. 9. Contours of the normalized velocity magnitude (U/Umax) and the flow streamlines for the bent channel at (a) Kn = 0.05, (b) Kn = 0.5, and
(c) Kn = 5.0. Umax is chosen as the maximum velocity magnitude under the corresponding Knudsen number.
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FIG. 10. Contours of the normalized velocity magnitude U/Umax at the first corner for (a) Kn = 0.05, (b) Kn = 0.5, and (c) Kn = 5.0. The lines marked with 0.2,
0.4, 0.6, and 0.8 represent the velocity contour lines of the 20%, 40%, 60%, and 80% of the maximum velocity magnitude, respectively.

FIG. 11. Contours of the normalized velocity magnitude at the chamfered corner. The lines marked with 0.2, 0.4, 0.6, and 0.8 represent the velocity contour
lines of the 20%, 40%, 60%, and 80% maximum velocity magnitude, respectively. (a) Kn = 0.05, (b) Kn = 0.5, and (c) Kn = 5.0.

number, which indicates that with the increase of the rarefac-
tion effect, the disturbance caused by the corner gradually
rises, resulting in a larger area of low velocity at the corner.
What is more, Fig. 7 shows that the pressure before the corner
increases as compared to that in the straight channel, while
the pressure after the corner drops, which is very similar to the
pressure distribution of the fluid through the narrowing tube or
throttle.54 Under this circumstance, the corner plays a role sim-
ilar to a “valve,” which results in a decrease of the effective flow
section. The main cause of this “rarefaction throttling effect”
should be attributed to the sudden change of the mainstream
direction imposed by the bend corner.

It should be noted that, even though we carefully selected
the aspect ratio of the bent channel L/H = 13.5 in the
two-dimensional simulations according to the previous lit-
erature5,40,41 to maintain reasonable results in the three-
dimensional cases, there might be different behavior due to
greater wall interactions in the corners of the bend under three-
dimensional conditions, which may lead to a more pronounced
rarefaction throttling effect.

D. Effect of the chamfering in bent channel

To give guidance for the design of the channel, we add a
chamfer of 45◦ to the corner of the bend. Figure 11 shows the
contour of the normalized velocity magnitude U/Umax in the
90◦ bent channel with a chamfer. It is found that the chamfer
makes the gas turn smoothly at the bend, and the area of the
local low-velocity area is no longer concentrated near the outer
wall of the corner. However, the comparison of the MFRs in

channels before and after chamfering (shown in Fig. 12) indi-
cates that the MFR only increases slightly after chamfering,
and the amount of increase gradually drops with the increasing
Knudsen number. This is consistent with the result shown in
Fig. 2, where the change of the bend angle from 90◦ to 45◦

only causes an increase in the MFR of less than 1.7%.

E. Effect of the tangential momentum
accommodation coefficient in bent channel

Finally, we change the TMAC α to examine the effect of
different wall conditions on the gas flow in micro-channels

FIG. 12. The mass flow rate Q in the straight channel, channel with
chamfering corner, and channel with 90◦ corner.
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FIG. 13. (a) The dimensionless mass flow rate Qstraight in the straight channel, and (b) the dimensionless mass flow rate Qbend in the bent channel with a bend
angle of 90◦ under different tangential momentum accommodation coefficients α.

with bends. Figure 13(a) shows the MFR in the straight chan-
nel under different α. It can be found that the present DVM
solutions agree well with those from Cercignani et al.35 with
relative error less than 0.5%. Figure 13(b) shows the results for
the MFR in the channel with a bend angle of 90◦ under different
α. The MFR increases with the drop of α at the same Knud-
sen number. This is because α represents the proportion of the
diffusive reflection on the wall. As α decreases, the proportion
of diffuse reflectance decreases and the specular reflectance
increases so that the velocity slip gradually becomes signifi-
cant (note that the slip coefficient is roughly proportional to
(2−α)/α). The ratio of MFRs in the channel with bends and the
one in the straight channel Qbend/Qstraight at different TMACs
are given in Fig. 14. It can be seen that, for a fixed value of
α, the MFR ratios decrease with an increase in the Knudsen
number. The smaller the TMAC is, the more rapidly the MFR
ratio drops as Kn increases. For a fixed Knudsen number, the
MFR ratio drops as the TMAC decreases. This indicates that
the slip velocity at the corner is a vital factor in the generation
of the “throttling effect,” and with small TMAC, the “throt-
tling effect” could become significant even at relatively small
Knudsen numbers.

FIG. 14. The ratio of the MFR in the channel with bends to the one in
the straight channel Qbend/Qstraight under different tangential momentum
accommodation coefficients α.

V. CONCLUSIONS

In summary, based on the linearized Bhatnager-Gross-
Krook equation, we have investigated the behavior of a two-
dimensional pressure-driven gas flow through a micro-channel
with two bends. The mass flow rates (MFRs) of the gas flows in
the bent micro-channel with different bend angles are obtained.
Our results show that the effects of the corners on the flow field
depend on the Knudsen number and the tangential momen-
tum accommodation coefficient. The main findings could be
summarized as follows.

1. At small Knudsen numbers, the dimensionless MFR
through the bend is slightly higher than that in the straight
channel. Since this phenomenon is also found in the con-
tinuum flow regime by using the MRT-LBM method that
solves the Navier-Stokes equation with zero velocity-slip
boundary condition, for the first time we find that the
slight increase in MFR is not due to the rarefaction gas
effect but due to the increase in cross section induced by
the corner.

2. As the Knudsen number increases, the MFR in the bent
channels starts to decline and the amount of reduction
increases significantly compared to the straight channel.
The increase in the bend angle would also reduce MFR
under the same Knudsen number. Besides, the Knudsen
number corresponding to the minimum location of MFR
gradually increases with the bend angle and even disap-
pears in the slip and transition flow regimes when the
bend angle reaches 90◦. The distributions of normalized
velocity at different cross sections show that, as the Knud-
sen number increases, the zone of low velocity at the bend
gradually expands and the gas flows are “squeezed” into
the inner corner, which is very similar to the throttling
effect.

3. Moreover, the MFR through the micro-channel with the
chamfer corner is calculated. Although the low-velocity
area is not as concentrated as the 90◦ corner, the reduction
of MFR is not improved apparently.

4. The decrease in the tangential momentum accommoda-
tion coefficient would enhance the slip velocity on the
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wall, which could exacerbate the rarefaction throttling
effect and allow it to occur at very low Knudsen numbers.

Finally, it is noted that the bent channel should be con-
sidered as not only itself but also a very basic component of
complex geometry. Understanding this rarefaction throttling
effect would help evaluating the MFRs affected by the com-
plex geometry under low-velocity and rarefied circumstances,
especially in a quite tortuous geometry such as micron-sized
chips and shale rocks.
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