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For ultra-thin gas lubrication, the surface-to-volume ratio increases dramatically when the flow geom-
etry is scaled down to the micro/nano-meter scale, where surface roughness, albeit small, may play
an important role in gas slider bearings. However, the effect of surface roughness on the pressure
and load capacity (force) in gas slider bearings has been overlooked. In this paper, on the basis of
the generalized Reynolds equation, we investigate the behavior of a gas slider bearing, where the
roughness of the slider surface is characterized by the Weierstrass-Mandelbrot fractal function, and
the mass flow rates of Couette and Poiseuille flows are obtained by deterministic solutions to the
linearized Bhatnager-Gross-Krook equation. Our results show that the surface roughness reduces
the local mass flow rate as compared to the smooth channel, but the amount of reduction varies
for Couette and Poiseuille flows of different Knudsen numbers. As a consequence, the pressure rise
and load capacity in the rough bearing become larger than the ones in the smooth bearing in the
slip and early transition flow regimes, e.g., a 6% roughness could lead to an increase of 20% more
bearing load capacity. However, this situation is reversed in the free-molecular flow regime, as the
ratio of the mass flow rates between Couette and Poiseuille flows is smaller than that in the smooth
channel. Interestingly, between the two extremes, we have found a novel “rarefaction cloaking”
effect, where the load capacity of a rough bearing equals to that of a smooth bearing at a certain
range of Knudsen numbers, as if the roughness does not exist. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.4999696

I. INTRODUCTION

The fluid film bearing employing a thin layer of moving
pressurized liquid or gas between two solid surfaces to reduce
friction and wear, has found applications in almost every indus-
trial sector.1 Generally speaking, the fluid film bearing can be
classified into two types: a hydrodynamic bearing in which
the film is generated and maintained by viscous drag of the
surfaces themselves as they are sliding relative to each other
and a hydrostatic bearing in which the film is created and
maintained by an external pump that pushes the lubricant into
solid surfaces. An important application of hydrodynamic fluid
bearings in micro/nano-flow configurations is the head-disk
interface of computer hard disk drives. In a modern Wichester-
type disk drive,2 the disk rotates at a certain angular speed,
where air between the disk surface and read/write head forms
a film to suspend the floating head. Accurate prediction of the
bearing load capacity on the supporting element is crucial to
improve the performance and durability of the bearing sys-
tems. This requires a quantitative understanding of the film
lubrication dynamics.

Traditionally, the lubrication problem is studied based
on the classical Reynolds equation.3 Starting from the

a)Author to whom correspondence should be addressed: lei.wu.100@
strath.ac.uk

incompressible Navier-Stokes (NS) equations, a pressure
equation for the liquid lubricant has been derived with one
less dimensional variable, since the fluid film usually has two
disparate length scales and hence the pressure can be assumed
constant along the film thickness. The thin-film approximation
yields acceptable accuracy when the local film thickness is less
than 10% of that in other two dimensions.1 The lubrication
theory for gas bearings can be derived as an extension of the
original Reynolds equation by considering compressibility.4

As gas viscosity is usually orders of magnitude smaller than
that of the commonly used liquid lubricants, gas hydrodynamic
bearings generally have much narrower clearance.

Due to the efficiency and environmental considerations,
as well as the rapid development of micro-electro-mechanical
systems, modern gas bearings operate at extremely small
gaps.5 For example, in a hydrodynamic seal used in the
aero-engine applications, the gap sizes of 3–12 µm must be
maintained over the typical diameter of 0.3–1.0 m,6 while
in hard disk storage devices, the thickness of clearance is
reduced to several nanometers, e.g., the current disk drives
of an areal density of 500 Gb/in.2 have head-disk spacing
at the order of 10 nm.7 This makes modeling of ultra-thin
gas film lubrication a research challenge because the mean
free path λ of gas molecules is comparable to or even larger
than the characteristic flow length d0, and the flow is conse-
quently rarefied. While the Boltzmann equation can describe
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the rarefied gas dynamics, the NS equations, as the first-order
approximation in terms of the Knudsen number (Kn = λ/d0)
to the Boltzmann equation,8 are valid only in the continuum
flow regime where Kn . 0.001.9 As the Knudsen number
increases, higher-order terms (rarefaction effect) begin to dom-
inate, and the NS equations gradually lose validity. Not only
do the rarefaction effects cause a noticeable velocity slip and
temperature jump at solid surfaces in the slip flow regime
(0.001 . Kn . 0.1) but also modify the constitutive rela-
tions in the transition (0.1 . Kn . 10) and free-molecular
(10 . Kn) flow regimes where Newton’s law for stress and
strain as well as Fourier’s law for heat flux and temperature
gradient do not hold anymore.

It is expensive to find solutions to the Boltzmann equation
due to its complicated collision term. Historically, in order to
model rarefaction effects in ultra-thin film lubrication, vari-
ous velocity-slip models have been incorporated into the NS
equations for a variety of bearing geometries.10–14 However,
the experiments15–18 have shown that the modified Reynolds
equations underpredict the pressure rise when the gas thick-
ness is below 250 nm.1 Recently, a new extended Reynolds
equation based on the regularized 13 moment equations and
the lubrication theory has been derived for gas slider bear-
ings, but it can only be applied for the Knudsen number up to
unity.19 Therefore, it is essential to establish a generalized gas
film lubrication equation derived from the Boltzmann equation
for flows at arbitrary values of the Knudsen number.20–25

The generalized Reynolds equation for rarefied gas flows
has been established by Fukui and Kaneko21 and Cercignani,
Lampis, and Lorenzani,25 where the mass flow rates (MFRs) of
the fundamental Poiseuille and Couette flows in the lubrication
film are obtained based on gas kinetic equations such as the
linearized Bhatnager-Gross-Krook (BGK) kinetic equation26

for arbitrary Knudsen numbers. Although the BGK model is a
simplification of the Boltzmann equation, for gas slider bear-
ing problems, the comparisons to the direct simulation Monte
Carlo (DSMC) method,27–31 which is an equivalent solver
for the Boltzmann equation, show that the BGK model has
sufficient accuracy.

It should be noted that in the aforementioned studies, the
bearings have idealized smooth surfaces. When the flow geom-
etry is scaled down to the micro- and nano-scale, the surface-
to-volume ratio increases dramatically so that the surface
related effects including the slip length, gas-surface accommo-
dation, and surface roughness are important.32 These effects
need particular attention especially in ultra-thin films, as the
molecular interactions with the surfaces could affect the veloc-
ity profile and the gas flow rate significantly.33 It has been
pointed out that in the modern hard disk drives, glass disks
and single-crystal silicon surfaces are the potential candidates
for noticeable specular reflections, while other surfaces such
as a slider with a sputtered carbon overcoat or a metalized
surface are rough.34–36 Various gas-surface interactions have
been considered by employing different tangential momentum
accommodation coefficients in the Maxwell diffuse-specular
wall boundary condition.23,25,37 However, as far as we are
aware of, few studies have been devoted to the surface rough-
ness effect on the application of gas lubrication problems,
especially when the flows are highly rarefied, i.e., the Knudsen

number is high. A few studies on the impact of surface rough-
ness on gas flows in microchannels have been published.38–41

At the micro/nano-meter scale, the surface roughness, albeit
small, may be comparable to the channel height and play an
important role in gas hydrodynamic bearings.

The hydrodynamic gas lubrication of rough surfaces has
attracted significant attention since 1980. The local hydrody-
namic pressure in a rough bearing is a random quantity due
to the random nature of the local film thickness. Since the
mean pressure level is the quantity of interest, most studies
aimed at predicting the mean pressure without resolving the
random local pressure. There are two types of Reynolds equa-
tions for the mean pressure distribution based on the employed
analytical methods: the first one involves averaging the film
thickness42,43 and the other one averaging the flow.44,45 The
average thickness theory assumes that the flow rate and the
pressure gradient are statistically independent of the local film
thickness and obtains the mean pressure according to the aver-
age properties of film thickness. In the average flow model,
however, the mean pressure is calculated by the rate of flow
passing through the nominal geometry considering the rough-
ness effect. The roughness effect could be represented by either
the pressure and slip flow factors or the homogenized coeffi-
cients. Another approach to obtain the mean pressure is very
different from the average models, which is based upon the
assumption that some approximations valid for smooth sur-
faces can also be applied to rough ones. Then the local pressure
distribution which possesses a random form is obtained fol-
lowing exactly all the contours of the rough surface.46 The
above methodologies have been extended to the generalized
Reynolds equation for ultra-thin gas films.47–49 However, these
studies focused only on the effect of various roughness param-
eters on the behavior of hydrodynamic bearings at a fixed
Knudsen number. Understanding of the roughness effect in
gas bearings covering the whole flow regime has not been
addressed yet.

Therefore, the aim of this paper is to investigate the effect
of surface roughness on the behavior of a two-dimensional gas
hydrodynamic bearing under a wide range of Knudsen num-
bers. Our approach is similar to the average flow model, in
which the average flow rates in a rough channel are directly
obtained from numerical solutions of the linearized BGK equa-
tion. The geometry of the problem, the generalized Reynolds
equation, and the fractal roughness surface are introduced in
Sec. II. The linearized BGK equation and its numerical scheme
are briefly described in Sec. III. The roughness influence on
the fundamental flows is numerically investigated based on
the deterministic solutions to the linearized BGK equation in
Sec. IV. The pressure distribution and the load capacity of
the bearing are obtained from the generalized Reynolds equa-
tion as detailed in Sec. V. Finally, conclusions are given in
Sec. VI.

II. FORMULATION OF THE PROBLEM

As shown in Fig. 1, we consider a two-dimensional slider
in a Cartesian coordinate system x(x, y). The bottom plate,
which is located at y = 0 and has a length l, moves with a con-
stant velocity uw in the x-direction. The upper plate is fixed and
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FIG. 1. Schematic of a two-dimensional slider geometry (not to scale). The
shaded regions are solid plates, while the gas flows between the two plates.
The Poiseuille flow is driven by the pressure gradient dp/dx when the two
plates are stationary, while the Couette flow is driven by the moving bottom
plate with the horizontal velocity uw.

has a constant pitch angle θ. The nominal gap height d between
the two plates in the y-direction varies and has a minimum
value of d0 at the end of the bearing. The height of the gap is
much smaller than its length so that d0/l � 1. Outside the bear-
ing, the gas is at ambient pressure p0 and temperature T0. Both
plates extend to infinity in the direction perpendicular to the
x-y plane so that the problem is effectively two-dimensional.
This planar slider is a prototype of the hydrodynamic thrusts
or the slider bearings. In this work, the top stationary slider
is treated as having a rough surface, while the bottom plate is
smooth. We are interested in the influence of surface rough-
ness on the pressure distribution along the x direction and the
overall bearing load capacity.

A. Generalized Reynolds equation

The derivation of the generalized Reynolds equation for
rarefied gas flows follows the same hypotheses as adopted in
the classical lubrication models.21,24 First, the thickness of the
film is small compared to its length and the pressure does
not vary across the thickness. Second, the temperature at the
plates is T0, and the heat generated in the gas flow is negligi-
ble, which leads to the assumption that the flow is isothermal.
Third, the speed of the bottom plate is small so that the gas flow
in the microchannel is a linear combination of the Poiseuille
and Couette flows. According to the mass conservation, the
generalized Reynolds equation for the pressure distribution p
in the x-direction is derived as24

d
dX

(
Q̄pPD3 dP

dX
− Q̄cΛPD

)
= 0, (1)

where the non-dimensional variables are defined as

X =
x
l

, P =
p
p0

, D =
d
d0

, (2)

and the bearing number Λ is

Λ =
6µuwl

p0d2
0

. (3)

In the above equations, Q̄p and Q̄c are, respectively, the
reduced local MFRs of the Poiseuille and Couette flows,
which are normalized by the corresponding flow rates at the
continuum-flow limit (i.e., solved by the NS equations with
no-slip velocity boundary conditions),

Q̄p(p, d) = −
Qp(p, d)

ρ(dp/dx)d3/12µ
,

Q̄c(p, d) =
Qc(p, d)
ρuwd/2

, (4)

where ρ= p/RT0 is the local gas density (R is the gas constant),
µ is the gas shear viscosity at the ambient temperature T0,
while Qp and Qc are the MFRs of the Poiseuille and Couette
flows in the unit microchannel, respectively, see the bottom
panel in Fig. 1 and the caption. It is worthwhile to note that
the pressure in Eq. (1) is an average quantity across the film
thickness.

B. Fractal roughness function

All the practically prepared surfaces are rough at the
microscopic scale, which has to be taken into account properly
when the clearance in slider bearings is down to the nano-meter
scale. Here the fractal theory, which captures the different
scales and stochastic nature of solid surfaces, was used to
model the microscale structure of the rough surface. The self-
affine and multiscale properties of the rough surface profile are
described by the Weierstrass-Mandelbrot fractal function,50

r(x/d) = G
∞∑

n=n1

cos[2πγn(x/d + π)]

γ(2−Da)n
, (5)

where r is the value of surface deviation from the top plate
at y/d = 1.0, which defines the region belongs to the solid
surface when min(r) ≤ 1− y/d ≤ max(r). Da is the self-affine
fractal dimension, γ determines the frequency spectrum of the
roughness, and n1 is used to specify the low cutoff frequency of
the Weierstrass-Mandelbrot function. The scaling parameter G
is used to adjust the surface roughness ε so that the root mean
square σ of r(x) is equal to

σ = ε · d. (6)

An example of a surface of 2% roughness is shown in Fig. 1.

III. GAS KINETIC THEORY AND NUMERICAL SCHEME

As shown in the generalized Reynolds equation (1), the
pressure distribution in the gas slider bearing depends on
the reduced MFRs of the Poiseuille and Couette flows. The
MFR between two smooth parallel plates has been investigated
extensively. When the slider surface is not smooth, the MFR
could be strongly affected by the gas-surface interactions. In
order to obtain the flow rate through the rough channel shown
in Fig. 1, we adopt the linearized BGK equation to describe the
Poiseuille/Couette flow between the two parallel plates with
a distance of d, see the unit geometry in the bottom panel of
Fig. 1. The stationary top plate has a rough surface described
by Eq. (5). The gas flow is driven by either a constant pressure
gradient dp/dx or a moving bottom plate with the speed uw.
The aspect ratio of the unit-microchannel, i.e., the ratio of the
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length to the height of the channel is set to 1, and we choose
γ = 1.5 and n1 from 0 to 30 in Eq. (5). For a rough surface of
ε = 2% and Da = 1.5, we choose G = 0.0148.

A. The linearized BGK equation

Under the assumptions that the flow is isothermal and the
flow velocity is much smaller than the most probable molecular
speed vm =

√
2RT0 as typically found in the micro/nano-scale

gas bearings, the linearized BGK model equation for the two-
dimensional problem takes the following form:32,51

v ·
∂h
∂x
− 2a · v = L (ρ, u) −

√
π

2Kn
h,

L (ρ, u) =

√
π

2Kn
(ρ + 2u · v),

(7)

where h(x, v) is the perturbed velocity distribution function,
v = (vx, vy) is the molecular velocity normalized by the most
probable speed vm at the ambient temperature T0, x = (x′, y′) is
the spatial coordinate normalized by the channel height d, and
a = (ax, ay) is the external acceleration normalized by v2

m/d.
As we are interested in the steady-state solution only, the time
is not included in Eq. (7). The Knudsen number is defined
as Kn = λ/d, where the mean free path of gas molecules is
related to its shear viscosity µ as

λ =
µ(T0)

p

√
πRT0

2
. (8)

Finally, ρ is the perturbed number density and u = (ux, uy) is
the flow velocity normalized by vm. They can be calculated
from the perturbed distribution function as follows:

ρ =

∫
hfeqdv, u =

∫
vhfeqdv, (9)

where feq = exp(−|v|2)/π is the equilibrium distribution func-
tion normalized by p/v2

mmRT0 with m being the molecular
mass.

The dimensionless MFRs of the Poiseuille flow Q′p and
the Couette flow Q′c are, respectively, given by taking aver-
age through the whole computational domain: Q′p and Q′c
=
!

uxdx′dy′, when the steady-state of the gas flow is reached.
Under the current non-dimensionalized definition, the dimen-
sionless MFRs Q′p and Q′c are not consistent with those in
Eq. (4). These two normalization systems are connected by
the following relations:

Q′p =
δ

12
Q̄p, Q′c =

1
2

Q̄c, (10)

with the rarefaction parameter

δ =

√
π

2Kn
. (11)

In numerical simulations, we choose the acceleration as
a = (1, 0) in the Poiseuille flow and a = (0, 0) in the Couette
flow.

The kinetic equation (7) has to be solved together with
the gas kinetic boundary condition which determines the per-
turbed distribution function of the reflected gas molecules at
the solid surface from the distribution function of the incident

molecules. In this paper, the Maxwell’s diffuse boundary con-
dition52 is used at the solid surface. Therefore, at the moving
smooth plate located at y′ = 0, we have

h(x′, 0, v) = 2
√
π

∫
v′y>0

v′yh(x′, 0, v′)feq(v′)dv′ +
2uw

vm
vx,

(12)

while at the rough plate, we have

h(x′, y′, v) = 2
√
π

∫
v′n<0
|v′n |h(x′, y′, v′)feq(v′)dv′, (13)

where vn is the normal velocity vector at the solid surface
pointing into the gas flow region. Note that the velocity of
the bottom plate uw is zero in the Poiseuille flow. At the inlet
and outlet of the computational domain, the periodic boundary
condition is applied.

B. The discrete velocity method

The linearized BGK equation is solved by the discrete
velocity method (DVM). The molecular velocity space v is
represented by a set of discrete velocities. To capture the
discontinuities in the distribution function at large Knudsen
numbers, vx and vy are discretized by Nv non-uniform points
in each direction,53

vx,y =
4

(Nv − 1)3
(−Nv + 1,−Nv + 3, . . . , Nv − 1)3, (14)

where the discrete velocities are distributed in a square of
dimension [�4, 4]2. This choice of discrete velocities has
proven to be accurate in microflow simulations.51 The phys-
ical space is also discretized into the Cartesian grids. In the
x direction, Nx equidistant points are used. In the y direction,
the rough region 1 −max(r) ≤ y′ < 1 −min(r) is discretized
by Ny ,1 equidistant points, while the rest is discretized by Ny ,2

equidistant points. Note that the Weierstrass-Mandelbrot frac-
tal surface is not differentiable; therefore, the rough surface is
approximated by the “stair case” in the numerical simulation.

Equation (7) is solved by the following iterative method:
√
π

2Kn
h( j+1) + v ·

∂h( j+1)

∂x
= L (ρ(j), u(j)) + 2a · v, (15)

where the superscripts ( j) and ( j + 1) represent two consecu-
tive iteration steps and the spatial derivatives are approximated
by the second-order upwind finite difference method. The iter-
ation is terminated when the relative error in the macroscopic
flow velocity between two consecutive iteration steps is less
than 10�5.

IV. INFLUENCE OF FRACTAL ROUGH SURFACE
ON POISEUILLE AND COUETTE FLOWS

In this section, we assess the influence of the fractal rough
surface on the Poiseuille and Couette flows. The MFRs for
flows in the rough microchannels for the Knudsen numbers
ranging from 0.01 to 100 are obtained by numerically solving
the linearized BGK equation using the DVM. In order to ensure
the results presented here are accurate, the convergence study
is performed by running tests on different combinations of grid
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numbers, Nv, Nx, Ny ,1, and Ny ,2. We eventually fix Nx = 400,
Ny ,1 = 50, Ny ,2 = 50, and Nv = 34 for the Poiseuille flow and
Ny ,2 = 100 for the Couette flow. Further increase of the grid
numbers would improve the results by no more than 1%.

For the smooth channel with the diffuse boundary con-
dition, Q′c is always 0.5 in the whole flow regime, while Q′p
of the Poiseuille flow can be fitted by the following analytical
expressions:22

2Q′p =




−2.229 19δ + 2.106 73 + 0.016 53/δ − 0.000 069 4/δ2, δ < 0.15,

0.138 52δ + 1.250 87 + 0.156 53/δ − 0.009 69/δ2, 0.15 ≤ δ < 5,

δ/6 + 1.0162 + 1.0653/δ − 2.1354/δ2, δ ≥ 5.

(16)

It can be seen in Fig. 2 that, for the smooth channel, our DVM
solution agrees well with that from Cercignani, Lampis, and
Lorenzani54 and Fukui and Kaneko.22

When the roughness emerges on the top plate, both Q′p
and Q′c drop as compared to that of the smooth channel. This
implies that the flow capacity is reduced by the roughness,
and the gas is more or less “clogged up” in the rough chan-
nel. The difference in the flow rates between the rough and
smooth channels become significant as the Knudsen number
increases. For example, for the Poiseuille flow, the MFR Q′p
in smooth channel is equal to 1.2880 and 1.0294 when Kn
= 0.1 and 10, respectively, while the corresponding values in
the rough channel with ε = 2%, Da = 1.5 are 1.1621 and
0.8186. Therefore, a 2% roughness causes about 9.77% and
20.48% drops in Q′p for the flow at Kn = 0.1 and 10, respec-
tively. Similarly, for the Couette flow, the MFR Q′c in the
channel with 2% roughness is 0.4817 at Kn = 0.1 and 0.3555
at Kn = 10, which is about 3.66% and 28.9% smaller than
the corresponding results in the smooth channel. We have also
checked the MFR when roughness parameters in Eq. (5) take
different values. For example, when ε increases from 2% to

FIG. 2. The average mass flow rate in (a) the Poiseuille and (b) the Cou-
ette flows. Note that Q′p in the smooth channel are obtained from the DVM
solution of the linearized BGK equation (labeled as the “smooth, DVM”),
semi-analytical result (labeled as the “smooth, CLL model”) from Cercig-
nani, Lampis, and Lorenzani,54 and another semi-analytical result (labeled as
the “smooth, FK model”) from Fukui and Kaneko.22

6%, the MFRs decrease further as compared to those of the
smooth channel by the magnitudes of 31.87% and 36.44% for
Poiseuille and Couette flows at Kn = 10, respectively.

In order to understand the effect of surface roughness on
the detailed flow field, we plot the average horizontal velocity
ux at the selected Knudsen numbers in Fig. 3. It is noticed that
the roughness slows down the velocity mostly in the vicinity
of the top rough plate when the Knudsen number is small.
When Kn increases, this imperative effect from the rough sur-
face gradually expands to the whole channel. For example, at
Kn = 1 and 10, noticeable discrepancies in ux between
the smooth and rough channels appear even near the bot-
tom plate. This has also been qualitatively captured by the
multi-relaxation-time lattice Boltzmann method.40

As implied in the generalized Reynolds equation (1), when
the bearing number and gap height are fixed, the gas pressure
gradient within a bearing is roughly proportional to the MFR
ratio Q̄c/Q̄p between the Couette and Poiseuille flows. There-
fore, it is of practical interest to investigate the variation of

R =
Q̄c

Q̄p
, (17)

as a function of the Knudsen number.
In Fig. 4, it is found that MFR ratio R decreases as Kn

increases because for smooth channel Q̄c is always one but
Q̄p is a monotonically increasing function of Kn [note that
according to Eq. (10), we have Q̄p = 12Q′p/δ]. At small Knud-
sen numbers, the MFR ratio in the rough channels is higher
than the one in the smooth channel: as shown in Fig. 4(b), the
MFR ratio in the rough channel is larger than that in the smooth
channel by a maximum magnitude of 7.17% and 18.30% for
the surfaces with 2% and 6% roughness, respectively. This is
due to the fact that the drop in Q̄p introduced by roughness is
larger than that in Q̄c. However, this tendency changes in the
transition flow regime at Kn ∼ 2: at large Knudsen numbers,
the MFR ratio in the rough channel is lower than that in the
smooth channel, since the drop rate of Q̄c in the rough channel
exceeds the one in Q̄p. For example, at Kn = 100, the MFR
ratio R in the channel with 2% and 6% roughness is 81.57%
and 85.73% of that in the smooth channel, respectively.

The reverse of the drop in MFRs could be explained as
follows: while the top rough plate makes the horizontal veloc-
ity of the gas nearby in both Poiseuille and Couette flows equal
to (nearly) zero at all Knudsen numbers, the variation of the
gas velocity near the bottom plate with respect to Kn are quite
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FIG. 3. The average horizontal veloci-
ties for Poiseuille (top row) and Couette
(bottom row) flows in the channel with
2% roughness as compared to those in
the smooth channel.

different in the two flows. Generally speaking, the velocity slip
at the solid surface increases with the Knudsen number. As a
consequence, the horizontal velocity near the bottom smooth
plate increases with Kn in the Poiseuille flow; however, in the
Couette flow, the corresponding gas velocity near the bottom
smooth plate decreases with Kn since the bottom plate has a

FIG. 4. The variation of the MFR ratio of the Couette flow Q̄c to the Poiseuille
flow Q̄p as a function of the Knudsen number.

velocity uw already (so that the velocity slip still increases with
Kn), see the velocity profiles in Fig. 3. Therefore, at large Kn,
Q̄c drops faster than Q̄p. At small Kn, the fact that Q̄p drops
faster than Q̄c can be understood as follows: in the Poiseuille
flow, the gas velocity near the rough plate is zero which is much
reduced from the flow velocity 0.5 in the smooth channel, while
in the Couette flow, both rough and smooth channels have
nearly zero flow velocity near the top plate, see the velocity
profiles in Figs. 3(a) and 3(c).

When the surface roughness increases, the deviation of the
ratio R from that of the smooth channel increases in the slip
and early transition flow regimes. However, when the Knudsen
number is large, the MFR ratio in the rough channel of ε = 6%
is slightly higher than the one with 2% roughness, i.e., less
deviation from that of the smooth channel. This is mainly due
to the fact that the MFR of the Poiseuille flow reduces faster in
the channel with 6% roughness than that with 2% roughness
[see Fig. 2(a)] at large Kn, which compensates the drop in
the MRF ratio. As Rrough/Rsmooth should approach one when
ε → 0, the results in Fig. 4(b) indicate that there exists a certain
degree of roughness which minimizes the MFR ratio in the late
transition and free molecule flow regimes.

V. INFLUENCE OF FRACTAL ROUGH SURFACE ON
THE BEHAVIOR OF A GAS SLIDER BEARING

Now we investigate the influence of roughness on the pres-
sure distribution and the load capacity of the gas slider bearing.
The working gas is argon with viscosity µ = 2.117 × 10−5

Pa s and the ambient conditions are set to be T0 = 273 K and
p0 = 1 atm. The roughness parameters are ε = 6%, Da = 1.5.
The generalized Reynolds equation (1) is discretized by a
second-order finite difference scheme, with 100 equally spaced
discrete points being employed. The obtained nonlinear sys-
tem is solved iteratively by Newton’s method. A tolerance
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limit of 10�5 of the relative pressure difference between two
consecutive iterative steps is used. To avoid solving the BGK
equation at each intermediate iteration step, the local flow rates
Q′p and Q′c are pre-calculated based on the numerical scheme

described in Sec. III. Then, the MFRs of the Poiseuille and
Couette flows in the rough channel with ε = 6%, Da = 1.5
are fitted approximately by the following piece-wise analytical
equations:

Q′p =




0.056 64/Kn + 0.4206 − 0.053 32Kn + 0.3058Kn2, 0.01 ≤ Kn < 0.4,

0.0470/Kn + 0.4480 + 0.048 46Kn − 0.003 060Kn2, 0.4 ≤ Kn < 5,

−0.6072/Kn + 0.7083 + 0.006 338Kn − 0.000 027 47Kn2, 5 ≤ Kn ≤ 100,

Q′c =




−0.000 019 18/Kn + 0.4651 − 0.1660Kn + 0.1220Kn2, 0.01 ≤ Kn < 0.4,

0.014 60/Kn + 0.3922 − 0.023 36Kn + 0.002 225Kn2, 0.4 ≤ Kn < 5,

0.1529/Kn + 0.3037 − 0.000 181 7Kn + 0.000 001 047Kn2, 5 ≤ Kn ≤ 100.

(18)

It is worth noting that the fitting coefficients depend on the
degree of roughness. However, the approximation could sig-
nificantly accelerate the solution of the generalized Reynolds
equation. In Secs. VA–VC, the results labeled “smooth” for
the slider bearing with the smooth surface are obtained based
on Eq. (16), while the ones labeled “rough” for the slider bear-
ing with the rough surface of ε = 6%, Da = 1.5 are obtained
based on Eq. (18).

For the gas slider bearing, the normalized pressure P
always increases from one at the inlet X = 0, reaches a max-
imum value at X = Xm < 1, and then decreases to one at the
outlet X = 1. Based on this numerical observation, Eq. (1) can
be rewritten as

dP
dX
= R
Λ

D2
− C, (19)

where the constant C is equal to RΛ/D2 at the position X = Xm

where the reduced pressure P is maximum. From this equation,
it can be seen that, generally speaking, the magnitude of the
pressure rise is proportional to the MFR ratio R in Eq. (17)
when the bearing number, the pitch angle, and the minimum
distance d0 are fixed. This point will be useful in the subsequent
analysis.

In addition to the pressure distribution, the other two sys-
tem parameters will also be investigated:19 the bearing load
capacity W which indicates the load force of the bearing,

W =
∫ 1

0
(P − 1)dX, (20)

and the load center Xc which determines the focal point of the
resultant pressure on the slider surface,

Xc =
∫

1
0 (P − 1)XdX

∫
1

0 (P − 1)dX
. (21)

A. Roughness effect under a variety of pitch angles

We first fix the bearing length l = 5 µm and the minimum
channel height d0 = 50 nm, which results in an aspect ratio
of A = l/d0 = 100. The speed of the bottom plate is uw = 25
m/s. This gives Kn = 1.25 based on the minimum height d0

and a bearing number of Λ = 62.68. The pitch angle θ varies

from 0.002 to 0.018 rad so that the entrance channel height
d1 ranges from 60 to 140 nm. Profiles of the gas pressure in
bearings with smooth and rough sliders are plotted in Fig. 5.
We also include the solutions from a DSMC calculation29 for
reference. The comparison shows that although the surface
roughness reduces the local flow rates (see Fig. 2), the pressure
in the rough slider bearing is higher than that in the smooth
bearing. This can be explained by the fact that the pressure
gradient is roughly proportional to Q̄c/Q̄p when the bearing
number and the gap height are fixed. Therefore, when Q̄p drops
faster than Q̄c at low Knudsen numbers, i.e., the MFR ratio
in the rough channel is larger than that in the smooth chan-
nel (see Fig. 4), the pressure gradient is larger and hence the
pressure curve of the rough bearing is above that of a smooth
bearing.

FIG. 5. (a) The pressure distribution and (b) the bearing load capacity W and
load center Xc in the gas slider bearing, at different values of the pitch angle
θ, when Kn = 1.25, Λ = 62.68, A = 100, and the surface roughness ε = 6%.
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The bearing load capacity (20) and the center (21) with
different pitch angles are plotted in Fig. 5(b). Comparing to
the smooth bearing, the load capacity becomes larger in the
rough bearing and the load center moves towards the end of
the channel at Kn = 1.25. The increment of the bearing load
capacity due to the surface roughness is magnified by the
increasing pitch angle, as more gas is allowed to enter the
bearing gap. For example, when θ = 0.018 rad, a 6% surface
roughness could lead to an increase of 20% more bearing load
capacity.

Now we reduce the bearing length and the minimum chan-
nel height to l = 0.125 µm and d0 = 1.25 nm, so Kn = 49.95
and Λ = 2507.18. Profiles of the gas pressure and values of
the load capacity and center in the bearings with smooth and
rough sliders are plotted in Fig. 6. At large Knudsen num-
bers, Q̄c drops faster than Q̄p in rough channels, and the MFR
ratio R defined in Eq. (17) in rough channels becomes smaller
than that in smooth channels. Then, according to the analysis
in Eq. (19), the pressure rise in the rough bearing is smaller
than that in the smooth bearing. Meanwhile, the bearing load
capacity becomes smaller in the rough bearing and the load
center moves to the entrance of channel. The drop of the bear-
ing load capacity introduced by roughness is also magnified
as the pitch angle increases. At this time, when θ = 0.018 rad,
a 6% surface roughness could lead to a reduction of 7% less
bearing load capacity. These tendencies are in agreement with
those of the pressure distribution in Fig. 6.

From the above discussion, it can be inferred from Fig. 4
that the bearing load capacity of a rough bearing can be equal
to that of a smooth bearing in a certain range of the Knudsen
numbers. This is interesting in the sense that the presence of
surface roughness has no effect on the load force, as if the

FIG. 6. (a) The pressure distribution and (b) the bearing load capacity W
and load center Xc in the gas slider bearing, at different values of the pitch
angle θ, when Kn = 49.95, Λ = 2507.18, A = 100, and the surface roughness
ε = 6%.

FIG. 7. The pressure distribution in the gas slider bearing when Kn = 1.25,
θ = 0.01 rad, A = 100, and ε = 6%.

rough surface is shielded. This issue will be further explored
in Sec. V B.

B. Roughness effect under a variety of bearing
numbers

In the generalized Reynolds equation (1), the bearing
number Λ is an important parameter which can significantly
affect the pressure distribution. According to Eq. (3), Λ
depends on either the bottom plate velocity uw or the aspect
ratio A. To determine the influence of the surface roughness
under different values of Λ, we fix θ = 0.01 rad, A = 100,
and change the value of uw to reach different bearing num-
bers. The pressure distribution within the bearings operating
at Kn = 1.25 is plotted in Fig. 7, in which the DSMC result
for Λ = 771.75 is presented,27 while the pressure distribution
within the bearings at Kn = 49.95 is plotted in Fig. 8. It is
worth mentioning that the load capacity computed from the
average pressure distribution in the gas slider bearing is only
correct so long as the gas remains in local equilibrium,27 while
whenΛ is large, i.e., uw is comparable or even higher than vm,
the local equilibrium assumption breaks up and the rise of gas
temperature due to viscous heating cannot be negligible. But
the comparison with the DSMC results in the smooth channel

FIG. 8. The pressure distribution in the gas slider bearing when Kn = 49.95.
θ = 0.01 rad, A = 100, and ε= 6%.
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FIG. 9. The bearing load capacity W in the slider bearing of θ = 0.01 rad and
A = 100 operating under five selected Kn numbers and a wide range ofΛ from
10 to 104. The surface roughness is 6%.

indicates that the results from the linearized BGK equation
still have good accuracy.

It is seen from Figs. 7 and 8 that the influence of the
roughness as shown in Figs. 5 and 6 is still present when the
bearing number changes, and the deviation of the pressure dis-
tribution to that of the smooth channel is still opposite when
the gas flows are in the slip/early transition and free-molecular
regimes, respectively. Therefore, there exists a certain range of
Kn, under which the rough bearing possesses the same value
of load capacity as that of the smooth bearing. This is actually
confirmed in Fig. 9, which shows the bearing load capacity W
in the slider bearing operating under five selected Kn numbers
and a wide range of Λ from 10 to 104. Clearly, for a rough
bearing with 6% roughness, the load capacity of the rough
bearing is nearly the same as that in the smooth bearing when
Kn = 12∼ 15. This is quite interesting in the sense that rarefac-
tion effects beyond the NS level make the gas slider bearing
unaware of the presence of surface roughness. We call this
effect the “rarefaction cloaking” effect.

C. Roughness effect across different flow regimes

Finally, to show the roughness effect across different flow
regimes, we plot in Fig. 10 the bearing load capacity W in

FIG. 10. The bearing load capacity W in the slider bearing of θ = 0.01 rad
and A = 100 operating under four selected bearing numbers and a wider range
of Kn from 0.01 to 100. The surface roughness is 6%.

a slider bearing of pitch angle θ = 0.01 rad and aspect ratio
A = 100, which is operated under four selected bearing num-
bers and various Knudsen numbers ranging from 0.01 to 100.
Due to the variation of the MFR ratio Q̄c/Q̄p, for eachΛ, com-
paring to the smooth bearing, the rough bearing first generates
a larger bearing load capacity from the slip to early transi-
tion flow regimes, then as the Knudsen number increases the
“rarefaction cloaking” effect dominates so that the rough and
smooth surfaces have nearly the same value of load capacity,
and finally the rough bearing produces lower load capacity in
the free-molecular flow regime.

VI. CONCLUSIONS

In summary, based on the generalized Reynolds equa-
tion, we have investigated the behavior of a gas slider bearing
with the slider surface having a fractal rough structure. The
mass flow rates of the Poiseuille and Couette flows in the
rough microchannel are obtained by solving the linearized
Bhatnager-Gross-Krook equation. Our results show that the
Poiseuille and Couette flow rates in the rough channel are
lower than those in the smooth channel, and the difference
becomes significant as the degrees of rarefaction and rough-
ness increase. At small Knudsen numbers, the dimensionless
flow rate of the Poiseuille flow drops faster than that of the
Couette flow, which leads to a larger mass flow rate ratio of
the Couette flow to the Poiseuille flow in the rough channel
than that in the smooth channel. However, at large Knudsen
numbers, the reduction in the dimensionless flow rate of the
Couette flow exceeds that of the Poiseuille flow, and the mass
flow rate ratio in the rough channel becomes smaller than that
in the smooth channel.

As a consequence, at small Knudsen numbers, the pre-
dicted pressure and load capacity in the rough bearing is larger
than that of the smooth bearing. For instance, in a gas slider
bearing operating in the early transition regime, a 6% rough-
ness could lead to an increase of 20% more bearing load
capacity. Moreover, the load center in the rough bearing is
closer to the end of the channel. However, at large Knudsen
numbers, the rough bearing could have lower pressure and load
capacity than the smooth bearing and have load center closer
to the entrance of the channel. For instance, in a slider bearing
operating in the free molecular regime, a 6% roughness could
lead to a reduction of 7% less bearing load capacity. Between
the two extremes, we have found a novel “rarefaction cloak-
ing” effect, where the load capacity of a rough bearing equals
to that of a smooth bearing at a certain range of Knudsen num-
bers, as if the roughness does not exist. This effect can only
be observed in rarefied gas flows, which cannot be explained
by the Navier-Stokes equations, with or without velocity slip
boundary conditions.

The influence of roughness effect under different bearing
operating conditions can be summarized as follows:

1. When the Knudsen number, the bearing number, and
the aspect ratio are fixed, the rise or reduction in the
bearing load capacity due to the surface roughness
becomes significant when the slider pitch angle becomes
larger.
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2. When the Knudsen number, the pitch angle, and the
aspect ratio are fixed, the roughness effect is first magni-
fied and then becomes weakened as the bearing number
increases.

3. When the bearing number, the pitch angle, and the aspect
ratio are fixed, there exists a Knudsen number under
which the rough bearing possesses the same load capac-
ity as that of the smooth bearing. The roughness will
boost the bearing load capacity, which is magnified at
relatively small bearing numbers in the slip and early
transition regimes, while it will reduce the load capac-
ity, which becomes significant at relatively high bearing
numbers in the extremely rarefied gas flows.

It should be noted that our findings can also be applied to
other gas lubrication systems where the generalized Reynolds
equation is applicable, say, when studying the rarefaction
effects in dynamic wetting, where the gas film is trapped
between a stationary solid surface which is rough in reality
and a moving liquid film which is usually smooth.55
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