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Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling
hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes
level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a
function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g.,
D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation
time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9),
is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the
sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic
equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature
cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but
the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations
with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and
for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for
the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method
suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows
through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future
development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

DOI: 10.1103/PhysRevE.96.023309

I. INTRODUCTION

When the mean free path λ of gas molecules is comparable
to or even larger than the characteristic flow length H , the
traditional Navier-Stokes (NS) equations derived from the
continuum-fluid hypothesis fail, and the gas kinetic theory
is adopted to describe rarefied gas dynamics. The Boltzmann
equation is fundamental to describe the dilute gas dynamics
using the velocity distribution function (VDF) of gaseous
molecules. According to the Chapman-Enskog expansion,
NS equations are only the first-order approximation in the
Knudsen number (Kn = λ/H ) to the Boltzmann equation
[1]. Therefore, they are valid in the continuum flow regime
where Kn ! 0.001 [2]. As the Knudsen number increases,
higher-order (nonequilibrium) terms begin to dominate, and
NS equations gradually loss validity. The nonequilibrium
effects not only cause velocity slip and temperature jump at
solid surfaces in the slip flow regime (0.001 ! Kn ! 0.1), but
also modify the constitutive relations in the transition (0.1 !
Kn ! 10) and free-molecular (10 ! Kn) flow regimes such
that the Newton’s law for stress and strain and Fourier’s law for
heat flux and temperature gradient do not hold anymore. This
leads to a number of counterintuitive phenomena, including
the thermal transpiration where gas molecules along solid
surface move towards the hotter region [3], the Knudsen
paradox where the dimensionless mass flow rate in Poiseuille
flow could increase when the gas pressure decreases [4], the
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temperature bimodality in the force-driven Poiseuille flow [5],
the inverted velocity in cylindrical Couette flow [6], and the gas
antiresonance where the shear stress in an oscillating lid-driven
cavity flow could be smaller than that of the one-dimensional
(1D) Couette flow [7].

In the past decades, due to the rapid development of mi-
croelectromechanical systems [8] and the shale gas revolution
in North America [9], extensive works have been devoted to
construct efficient numerical schemes to simulate gas flows
at the micro scale, where the flow velocity is usually far
smaller than the most probable speed of the gas molecules.
In most of these applications, gas flows vary from the slip to
the free-molecular flow regimes and the gas-surface interaction
dominates flow behavior. High-fidelity numerical methods to
solve the Boltzmann equation include the numerical kernel
method [10], the conservative projection-interpolation method
[11], the low-variance direct simulation Monte Carlo method
[12], and the fast spectral method [13], to name just a few.
Due to the high computational cost, however, the Boltzmann
equation is usually simplified by the Bhatnagar-Gross-Krook
(BGK) equation under the single relaxation time (SRT)
approximation [14], which is often solved by the discrete
velocity method (DVM) where the continuous molecular
velocity space is represented by a small number of discrete
velocities [15–19]. Generally speaking, rarefied gas flows with
large values of Kn need a large number of discrete velocities
to resolve the large variations and discontinuities in the VDF;
for instance, see the numerical examples in Refs. [13,20].

Rooted from the gas kinetics, the lattice Boltzmann method
(LBM) is a popular and powerful tool in modeling the NS

2470-0045/2017/96(2)/023309(13) 023309-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.023309


WEI SU, SCOTT LINDSAY, HAIHU LIU, AND LEI WU PHYSICAL REVIEW E 96, 023309 (2017)

hydrodynamics and beyond. Historically, the SRT-LBM is
first developed as an alternative solver for the NS equations.
Since it uses a very limited but highly optimized number of
discrete velocities, e.g., the D2Q9 scheme for 2D problems,
the SRT-LBM can be viewed as a special type of DVM to
solve the BGK equation [21]. To capture the nonequilibrium
effects beyond the NS hydrodynamics, a rigorous procedure
for obtaining high-order approximations to the BGK equation
is proposed [22] and tested in various canonical problems
[23–29]. The basic idea is that, since nonequilibrium effects
are related to high-order moments of the VDF, a higher-order
quadrature must be used in the simulation of rarefied gas
flows. By expanding the VDF into high-order Gauss-Hermite
polynomials or Gauss quadrature in the spherical coordinate
system, it is found that, with a not very large number of discrete
lattice velocities, e.g., D2Q36 or D2Q64, high-order LBM
schemes can accurately describe rarefied gas flows up to the
early transition flow regime, i.e., Kn ! 0.5.

In addition to high-order quadrature, Zhang et al. [30]
attempted to capture the Knudsen layer structure in rarefied
gas flows within the framework of the standard SRT-LBM
usually for simulation of hydrodynamics, but by introducing
the gas kinetic boundary condition and the effective relaxation
time that is a function of the gas-wall distance. In the
pressure-driven flow, this “wall-scaling” approach provides a
significant improvement for Knudsen numbers up to 0.5. Later,
this scheme has also been applied to study the rarefied thermal
[31] and oscillatory Couette flow [32] in the early transition
flow regime with great success.

Further improvement has been made by Guo, Zheng,
and Shi [33], who developed a numerical scheme within
the framework of multiple relaxation time (MRT) LBM.
In addition to the “wall scaling” of the relaxation time,
the combined bounce-back and specular-reflection boundary
condition is designed, such that the new scheme is equivalent
to solving the NS equations with the second-order velocity
slip boundary condition, at least in the slip flow regime. In
the Poiseuille flow between two parallel plates, it is found that
this MRT-LBM scheme is, surprisingly, even able to predict the
velocity profile and mass flow rate with good accuracy, up to
the free-molecular flow regime. For this reason, the MRT-LBM
has attracted significant attentions [33–37].

In the simulation of rarefied gas flows, it is quite astonishing
that the MRT-LBM of Guo et al. with fewer number of
discrete velocities [33] are more accurate than the LBM
of higher-order quadrature [22–29]. Although Guo et al.
honestly and explicitly pointed out that their scheme is only
designed and analyzed for plane walls [33] and is hard to be
extended to generalized gas-surface boundaries [38], it has
been widely applied to study the rarefied gas flows through the
microchannel with rough surface and complex porous media
[36,37]. However, whether this scheme works on complex
geometries or not is not clear. Thus, it is the aim of this paper
to address the accuracy of the MRT-LBM in simulating rarefied
gas flows in complex geometries.

The rest of the paper is organized as follows. In Sec. II, the
BGK equation and its numerical scheme is introduced. The
accuracy of the DVM is assessed, and the reason why higher-
order LBM fails is demonstrated by scrutinizing the structure
of the VDF. In Sec. III, by looking at the macroscopic flow

velocity and the NS equation with the effective shear viscosity,
the reason why the MRT-LBM with modified relaxation times
works in planar channels is explained. In Sec. IV, the numerical
results of the DVM is compared to those of MRT-LBM for
the Couette flow through rough microchannels [36], while in
Sec. V the Poiseuille flow through porous media is studied and
the accuracy of the regularized MRT-LBM [37] is assessed. In
Sec. VI, the DVM is used to calculate rarefied gas flows around
square cylinders in a microchannel to provide benchmarking
data for the future development of LBM in simulation of com-
plex microflows. Finally, conclusions are given in Sec. VII.

II. THE GAS KINETIC THEORY AND THE DVM

The fundamental Boltzmann equation describes the evolu-
tion of the VDF in dependence of spatial position, molecular
velocity, and time. In this paper, we use the following BGK
equation [14] instead of the full Boltzmann equation, in the
Cartesian coordinates:

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
=

√
π

2Kn
(Feq − f ). (1)

Here, v = (v1,v2,v3) is the molecular velocity normalized
by the most probable speed vm =

√
2RT0 at the reference

temperature T0, where R is the gas constant; x = (x1,x2,x3)
is the spatial coordinate normalized by the characteristic
flow length H ; a = (a1,a2,a3) is the external acceleration
normalized by v2

m/H ; t is the time normalized by H/vm;
f (t,x,v) is the VDF normalized by n0/v

3
m, where n0 is the

average number density of gas molecules at the reference
temperature; and Feq is the equilibrium VDF defined as

Feq = n

(πT )3/2
exp

(
− |v − u|2

T

)
, (2)

where n is the number density of gas molecules normalized by
n0, T is the temperature normalized by T0, u = (u1,u2,u3) is
the macroscopic flow velocity normalized by vm. Finally, the
Knudsen number is defined as

Kn = λ

H
, (3)

where the mean free path of gas molecules is related to its
shear viscosity µ of the gas as

λ = µ(T0)
p̄

√
πRT0

2
, (4)

with p̄ being the average gas pressure at the reference
temperature.

Macroscopic gas quantities are obtained from the velocity
moments of the VDF. The number density, flow velocity, and
temperature are calculated as follows:

n =
∫

f dv, (5)

u = 1
n

∫
vf dv, (6)

T = 2
3n

∫
|v − u|2f dv. (7)

Equation (1) has to be supplied with the gas kinetic
boundary condition which determines the VDF of the reflected
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gas molecules at the surface in terms of that of the incident
molecules. In this paper, the Maxwell diffuse-specular bound-
ary condition is used [39]. Suppose the wall has a temperature
of T0 and moves with the velocity uw, then the VDF for the
reflected molecules at the wall [i.e., when (v − uw) · n > 0, n
is the outward unit normal vector at the solid surface] is given
by

f (x,v) = α
nw

π3/2
exp(−|v − uw|2)

+ (1 − α)f (x,v − 2[(v − uw) · n]n), (8)

where α is the tangential momentum accommodation coeffi-
cient. The cases of α = 1 and 0 correspond to the diffusive-
reflection and specular-reflection conditions, respectively. A
brief review related to the tangential momentum accommoda-
tion coefficient can be found in [40]. Finally, nw is defined by

nw = 2
√

π

∫

(v′−uw)·n<0
|(v′ − uw) · n|f (x,v′)dv′, (9)

such that the mass flux across the wall is equal to zero.

A. The linearized BGK equation

When the flow velocity is very small compared to vm, and
the external acceleration is small, we can linearize the VDF
about the global equilibrium state feq as follows:

f = feq(1 + h), feq = exp(−|v|2)
π3/2

, (10)

and the perturbation VDF h(t,x,v) is governed by the following
linearized BGK equation [41,42]:

∂h

∂t
+ v · ∂h

∂x
− 2a · v = L(ϱ,u,τ ) − δh,

L(ϱ,u,τ ) = δ

[
ϱ+2u · v+τ

(
|v|2−3

2

)]
, (11)

where ϱ =
∫

hfeqdv is the perturbed number density, u =∫
vhfeqdv, and τ = 2

3

∫
|v|2hfeqdv − ϱ is the perturbed tem-

perature, and the rarefaction parameter is

δ =
√

π

2Kn
. (12)

The linearized boundary condition will be given for each
specific case considered below.

B. Numerical scheme for general 2D problems

The VDF in the linearized BGK equation (11) is defined
in a six-dimensional phase space. For general 2D problems
(i.e., in the x1 − x2 physical space), however, the phase space
can be cast into a four-dimensional one, which will reduce
the computational cost significantly. This is achieved by
introducing the following two reduced VDFs:

((x1,x2,v1,v2) = 1√
π

∫
exp

(
−v2

3

)
hdv3,

)(x1,x2,v1,v2) = 1√
π

∫
exp

(
−v2

3

)(
v2

3−
1
2

)
hdv3. (13)

Note that we are interested in the steady-state solution, so
the derivative with respect to the time is omitted in Eq. (11), and
hence ( and ) are time independent. In the following paper,
for convenience, we use v2D = (v1,v2), x = (x1,x2), a =
(a1,a2), and u = (u1,u2). The macroscopic quantities can now
be calculated as ϱ =

∫
(feq,2Ddv2D, u =

∫
v2D(feq,2Ddv2D,

and τ = 2
3

∫
[(|v2D|2 − 1)( + )]feq,2Ddv2D, where the equi-

librium state is now given by feq,2D = exp(−v2
2D)/π .

Multiplying the time-independent linearized BGK equation
by exp(−v2

3)/
√

π and exp(−v2
3)(v2

3 − 1/2)/
√

π , respectively,
and integrating the resulting equations with respect to v3, we
finally obtain the control equations for ( and ):

v2D · ∂(

∂x
= L((ϱ,u,τ ) − δ(, (14)

v2D · ∂)

∂x
= L)(τ ) − δ), (15)

where L((ϱ,u,τ ) = δ[ϱ + 2u · v2D + τ (|v2D|2 − 1)] + 2a ·
v2D and L)(τ ) = δτ/2.

For numerical simulations of Eqs. (14) and (15), the 2D
molecular velocity space v is represented by discrete velocities.
To capture the discontinuities and rapid variations in the VDF
at large Kn, v1 and v2 are represented by Nv nonuniform points
in each direction [13]:

v1,2 = 4
(Nv − 1)3

(−Nv + 1, − Nv + 3, . . . ,Nv − 1)3, (16)

where the discrete velocities are distributed in a square
of dimension [−4,4]2, and are refined near v1,2 = 0. Note
that the molecular velocity space can also be discretized
according to the Gauss-Hermite quadrature, but this type of
discretization is not accurate at large Knudsen numbers, as
will be demonstrated below.

Equations (14) and (15) are solved by the following iterative
method:

δ((j+1) + v2D · ∂((j+1)

∂x
= L((ϱ(j ),u(j ),τ (j )),

δ)(j+1) + v2D · ∂)(j+1)

∂x
= L)(τ (j )), (17)

where the superscripts (j ) and (j + 1) represent two consecu-
tive iteration steps, and the spatial derivatives are approximated
by the second-order upwind finite difference. The iteration is
terminated when the relative error in macroscopic flow velocity
between two consecutive iteration steps is less than 10−5.

C. Poiseuille flow between two parallel plates

To verify the accuracy of our numerical scheme, we
calculate the Poiseuille flow between two infinite parallel
plates, and compare the numerical results with those obtained
by Cercignani and Daneri [43], where the BGK equation with
the diffuse boundary condition is reduced to a purely integral
one analytically, which is then solved by the discrete ordinate
method numerically.

Consider two stationary parallel plates with a distance of H .
After the spatial normalization, they locate at x2 = −1/2 and
x2 = 1/2, respectively. The gas flow between the two plates is
driven by a pressure gradient along the x1 direction. As long as
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TABLE I. Dimensionless mass flow rates in the Poiseuille flow
between two parallel plates. The data in the column “Cercignani” are
obtained from Tables I and II in Ref. [43], while those of “DVM32,”
“GH8,” “GH32,” and “GH64” are the DVM results when the velocity
space is discretized by Eq. (16) with Nv = 32, and Gauss-Hermite
quadrature with 8, 32, and 64 abscissas, respectively.

δ Cercignani DVM32 GH8 GH32 GH64

0.01 3.0499 3.0522 1.0877 1.4743 1.6658
0.05 2.3026 2.3022 1.0991 1.4783 1.6554
0.1 2.0313 2.0327 1.1131 1.4820 1.6415
0.5 1.6025 1.6018 1.2131 1.4878 1.5509
1 1.5396 1.5386 1.3162 1.4977 1.5212
5 1.9928 1.9903 1.9421 1.9813 1.9861
10 2.7669 2.7674 2.7322 2.7608 2.7643

the pressure gradient is small, the governing equation for the
perturbed VDF can be given by Eq. (14), and the dimensionless
mass flow rate,

Q =
∫ 1/2

−1/2
u1(x2)dx2, (18)

can be found by setting a = (1,0). From Eq. (11) we know that
the VDF has the symmetry h(v1) = −h(−v1), so according to
the diffuse boundary condition (9) and the linearization (10),
the reflected VDFs ( and ) at the two walls are zero. Since this
problem is effectively 1D, the spatial derivative with respect
to x1 is omitted, while the spatial domain −1/2 " x2 " 1/2
is discretized by 100 uniform cells.

Table I compares the mass flow rates obtained from the
DVM of different velocity discretization schemes with those
of Cercignani and Daneri [43]. It is clearly seen that the DVM
has very good accuracy when the molecular velocity space
is discretized by Eq. (16) with Nv = 32, where the relative
error is within 0.13%. On the contrary, when the molecular
velocity space is discretized by the Gauss-Hermite quadrature,
the accuracy of the DVM is only good at large values of δ (or
equivalently, small values of Kn) when the flow is in the slip
regime; at small values of δ (i.e., transition and free molecular
flow regimes), the DVM with Gauss-Hermite quadrature yields
wrong results even when there are 64 discretized velocities
in each velocity direction. For example, when δ = 0.01, the
volume mass flow rate is underestimated by 50%. Further
increase of the number of lattice velocities could increase the
simulation accuracy, but the convergence to the exact solution
is rather slow.

The fundamental reason behind the unsatisfied performance
of the Gauss-Hermite quadrature is that, as δ decreases, gas
molecules in the force-driven Poiseuille flow concentrate near
v2 = 0, and the VDF varies rapidly near this region; see
Fig. 1(a). In this case, the minimum value of the discretized
velocities is v2 = 0.1948 in the “GH32” scheme (see the
definition in Table I) cannot reflect the large variation of
the VDF in the region of |v2| # 0.05. On the contrary,
when v2 is discretized by Eq. (16) with Nv = 32, we have
min(|v2|) = 0.00013 and there are eight discrete velocities in
the region of |v2| < 0.05; therefore, the large variation of the
VDF is captured and the mass flow rate is almost the same

v2
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FIG. 1. The marginal VDF
∫

v1((x2 = 0,v2D)feq,2Ddv1 in the
force-driven Poiseuille flow between two parallel plates. The rar-
efaction parameter δ in the linearized BGK equation is (a) δ = 0.01,
(b) δ = 0.1, (c) δ = 1, and (d) δ = 10. (Solid lines) The marginal
VDF obtained from DVM with Nv = 320 in Eq. (16). Note that
Nv = 32 is enough to get accurate results; we use Nv = 320 here just
to show the detailed structure of the VDF. (Squares) Results from
the high-order Gauss-Hermite quadrature with 32 abscissas in each
velocity direction.

as that obtained from the “semianalytical” method [43]. In
the following simulations, if without specification, we use the
nonuniform velocity discretization (16) with Nv = 32.

It is worth mentioning that the accuracy of the DVM has
also been verified by the direct simulation Monte Carlo method
of Bird [44], for rarefied gas flows through porous media;
for example, see the details in Fig. 3 of Ref. [45] and the
corresponding texts.

III. HOW DOES THE MRT-LBM WORK
IN PLANAR CHANNEL?

For the discussion in the above Sec. II C we know that, in
order to capture the physical phenomena at the mesoscopic
level, that is, to resolve the VDF, we need a reasonably large
amount of discrete velocities; and once the VDF is obtained
accurately, the macroscopic flow quantities are also accurately
captured. The MRT-LBM, with only nine discrete velocities,
certainly cannot describe the large variation of the VDF in
Figs. 1(a) and 1(b). However, various numerical simulations
have shown that the MRT-LBM with modified relaxation
times can capture the flow velocity in the planar Poiseuille
flow [33,34], up to the free-molecular flow regime. Thus, to
understand how the MRT-LBM works, we need to look at the
macroscopic level.

To this end, we first plot the typical velocity profiles of
Poiseuille flow in Fig. 2(a). It is clear that, when δ is large (or
equivalently the Knudsen number is small), the gas has nearly

023309-4



COMPARATIVE STUDY OF THE DISCRETE VELOCITY . . . PHYSICAL REVIEW E 96, 023309 (2017)

x2/H
-0.5 -0.4 -0.3 -0.2 -0.1 0

u
1

1

2

3

4

5

6

7

(a)
δ=0.1
δ=1
δ=5
δ=10
δ=20

x2/H
-0.5 -0.4 -0.3 -0.2 -0.1 0

µ
e
/
µ

0

0.2

0.4

0.6

0.8

1

1.2

(b)

δ=20

δ=10

δ=1

δ=0.1

δ=5

FIG. 2. (a) The velocity profile in the Poiseuille flow between two
parallel plates, obtained from the DVM with Nv = 32 in Eq. (16).
For symmetry, only half of the spatial domain is shown. (b) The ratio
between the effective viscosity and real viscosity of gas. Symbols
are the numerical results according to Eq. (25). Solid lines are the
analytical results given by Eq. (22). Also note that according to
Eq. (23), µe/µ is 0.9186, 0.8494, 0.7383, 0.3607, and 0.0534 when
δ is 20, 10, 5, 1, and 0.1, respectively.

the same slip velocities at the wall. When δ decreases, the slip
velocity increases. Meanwhile, the velocity profile becomes
flatter. The competition between the two effects leads to the
Knudsen minimum at Kn ∼ 1. That is, the dimensionless mass
flow rate is minimum; see also the data in Table I.

We then look at the governing equation for the flow velocity
u1. According to the Chapman-Enskog expansion [1], for the
specific problem in Sec. II C, the equation in the dimensionless
form can be written as follows:

∂

∂x2

(
Kn

∂u1

∂x2
+ High-order terms

)
= −

√
π , (19)

where the high-order terms are contributions beyond the
hydrodynamic level; details of which are very complicated (for
example, see those in Burnett equation [46]) and are not given

here. Note that the shear viscosity of the gas has been implicitly
included in the Knudsen number according to Eqs. (3) and (4),
and the Knudsen number is spatial independent.

An easy way to take the high-order terms into account is to
introduce the effective viscosity µe and approximate Eq. (19)
by the following form:

∂

∂x2

(
Kne

∂u1

∂x2

)
= −

√
π , (20)

where Kne is the effective Knudsen number; it is related to the
effective shear viscosity as

Kne

Kn
= µe

µ
, (21)

and µe could be dependent on the spatial variable or not.
From the simple kinetic theory we know that the shear

viscosity is proportional to the mean free path of gas molecules
[1]. It is also argued by some authors that the mean free
path near the solid wall is reduced as compared to that in
the bulk region. So for flows between two parallel plates,
Guo et al. introduced the following spatial-dependent effective
shear viscosity [33]:

µe

µ
= 1

2

[
ψ

(
2x2 + 1

2Kn

)
+ ψ

(
1 − 2x2

2Kn

)]
, (22)

where ψ(z) = 1 + (z − 1) exp(−z) − z2
∫ ∞

1 t−1 exp(−zt)dt ,
while Li et al. introduced the spatial-independent correction
to the shear viscosity as [34]

µe

µ
= 1

1 + 2Kn
. (23)

Note that there are many other forms of the effective shear
viscosity in the literature. We only introduce these two forms
here because they have been implemented in the MRT-LBM.

The approximate equation (20) with the effective shear
viscosity (22) does explain the rigorous solution from the BGK
equation to some extent. Integrating Eq. (20) with respect to
x2 and considering the symmetry condition at x2 = 0, we have

Kne

∂u1

∂x2
= −

√
πx2, (24)

which leads to

µe

µ
= Kne

Kn
= −2δx2

(
∂u1

∂x2

)−1

. (25)

With the DVM solution to the BGK equation (11), we can
obtain the ratio between the effective and real shear viscosities
numerically using Eq. (25). We compare it to the analytical
expression (22) and show the results in Fig. 2(b). Clearly,
when δ = 20 and 10, the agreement between the numerical
and analytical solutions of µe/µ is good. This explains why
the MRT-LBM, with appropriate boundary conditions, gives
excellent velocity profiles of Poiseuille flow with those from
the linearized Boltzmann equation; see Fig. 7 in Ref. [33].
As δ decreases, the analytical expression of Guo et al. is
always higher than the numerical results; specifically, large
differences between the two are observed near the Knudsen
minimum where δ ∼ 1 (or Kn ∼ 1). This explains why the
velocity profiles obtained from the MRT-LBM of Guo et al.
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have the largest discrepancy with the results from the linearized
Boltzmann equation, when the Knudsen number is around one
(see Fig. 7 in Ref. [33]).

This deficiency of the MRT-LBM has been reduced by Li
et al., who adopted the effective shear viscosity (23). From
the caption of Fig. 2 we can see that this special form of
µe/µ has value roughly equal to the spatial average value of
µe/µ from the numerical solution of the BGK equation. For
instances, when δ = 1, µe/µ is 0.3607 from Eq. (23), while the
numerical value of µe/µ varies from 0.2 near the wall to 0.47
in the middle of the channel; when δ = 5, µe/µ is 0.7383 from
Eq. (23), while the numerical value of µe/µ varies from 0.4
near the wall to 0.89 in the middle of the channel. Therefore,
the results of the MRT-LBM with the effective shear viscosity
(23) agree well with the solutions of the linearized Boltzmann
equation; see Fig. 1 in Ref. [34].

From the above discussion and comparison, together with
the fact that the MRT-LBM uses a special technique to
recover the second-order velocity slip boundary condition of
Cercignani [47], we may conclude that the MRT-LBM with
effective relaxation times [33,34] is an alternative solver for
the approximate Navier-Stokes equation (20) with the effective
shear viscosity. Therefore, the accuracy of this method depends
strongly on how accurate the effective shear viscosity is. The
effective viscosities given by Eqs. (22) and (23) have only been
validated in simple channels, whether they work in complex
geometries or not has not been rigorously assessed. In general,
we believe the determination of the effective viscosity like
Eqs. (22) and (23) in complicated geometry is difficult, because
it is even hard to define the local Knudsen number.

The following sections are devoted to assess the accuracy
of the MRT-LBM for rarefied gas flow simulations in complex
geometries.

IV. COUETTE FLOW IN ROUGH MICROCHANNELS

Now we begin to assess the accuracy of MRT-LBM in
the simulation of rarefied gas flows in irregular channels, by
comparing the numerical results obtained from deterministic
solutions of the linearized BGK equation.

As Ref. [36], we first consider the Couette flow between
two plates with a distance of H ; see Fig. 3. The smooth
top plate moves in the x1 direction with a speed U0, while
the stationary bottom plate has a roughness described by the

FIG. 3. The geometry of the rough channel as used in Couette
flow. Shaded regions are solid plates, while the gas flows in the white
region.

following Weierstrass-Mandelbrot fractal function:

r(x1/H ) = A

∞∑

n=n1

cos (2πγ nx1/H )
γ (2−D)n

, (26)

where D is the self-affine fractal dimension and γ determines
the frequency spectrum of the surface roughness.

The aspect ratio of the microchannel (i.e., the length over
the height of the channel) is 5, and we choose γ = 1.5 and n
from −4 to 30 in Eq. (26). The scaling parameter A is used to
adjust the surface roughness ϵ:

ϵ = σ

H
, (27)

where σ is the root mean square of the fractal function (26).
For instance, for a rough surface of ϵ = 2%, when D = 1.5,
we choose A = 0.0148.

At the inlet and outlet of the computational domain, the
periodic boundary condition is used, while at the solid surface,
the diffuse boundary condition is used [39]. That is, at the

FIG. 4. The convergence test of the mass flow rate Q obtained
from the DVM, for Couette flow in a rough channel of ϵ = 2% and
D = 1.5. The influence of the number of grid points in (a) the x1

direction, (b) the x2 direction within the rough region, that is, x2 ∈
[min(r), max(r)], and (c) the x2 direction outside the rough region,
that is, x2 ∈ (max(r),1].
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FIG. 5. The convergence test of the mass flow rate Q obtained
from the DVM, for the Couette flow in a rough channel of ϵ = 2%
and D = 1.5. The influence of the number of discrete velocity points
when Eq. (16) is used.

moving smooth plate located, we have

h(x1,1,v) = 2
√

π

∫

v′
2>0

v′
2h(x1,1,v′)feq(v′)dv′ + 2U0

vm

v1,

(28)

while at the bottom rough plate located,

h(x,v) = 2
√

π

∫

v′
n·n<0

|v′
n · n|h(x,v′)feq(v′)dv′. (29)

The boundary conditions for the two reduced VDFs ( and )
can be obtained with the help of Eq. (13).

Note that the Weierstrass-Mandelbrot fractal surface is not
differentiable, therefore, the rough surface is approximated
by the “stair case” in the numerical simulation, as used in
the MRT-LBM simulation [36]. Also, we are interested in the
horizontal velocity profile of the gas and the mass flow rate
at different levels of gas rarefaction, when the steady state is
reached. We take U0/vm = 1 in Eq. (28), so the horizontal flow
velocity is calculated as

u1(x1,x2) = U0

∫
v1((x1,x2,v2D)dv2D, (30)

while the average mass flow rate, which is normalized by
p̄HU0/RT0, is given by

Q =
∫∫∫

v1((x1,x2,v2D)dv2Ddx1dx2

5
, (31)

where the denominate 5 equals to the normalized length of the
channel in the horizontal direction, as shown in Fig. 3.

In all the numerical calculations, the 2D molecular velocity
space v2D is discretized by 32×32 nonuniform points. The
physical space is also discretized into Cartesian grids. In the x1
direction, 1500 equidistant points are used. In the x2 direction,
the rough region min(r) " x2 < max(r) is discretized by
60 equidistant points, while the rest is discretized by 100
equidistant points. Convergence studies were performed, and
it has been found in Figs. 4 and 5 that further refinement of the
velocity and spatial grids would only improve the solutions
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FIG. 6. Comparisons in the average streamwise velocity profile
of the Couette flow in microchannels between the DVM and
MRT-LBM [36], when D = 1.5, ϵ = 2%, (a) Kn = 0.1 and (b)
Kn = 1. “Smooth” here means that both plates are smooth, while
“rough” means that only the bottom plate has a rough surface;
see Fig. 3.

(i.e., mass flow rates in the rough channel of ϵ = 2% and
D = 1.5, under four selected Kn numbers) by a magnitude no
more than 2%.

We first compare the horizontal velocity profiles between
the numerical results obtained from the DVM and MRT-LBM
with the “wall-scaling” of the relaxation time, when Kn = 0.1
and 1. When both plates are smooth, from Fig. 6 we find that
MRT-LBM is accurate at Kn = 0.1. However, at Kn=1, the slip
velocity at the bottom surface from the MRT-LBM simulation
is about 15% smaller than that from the DVM. Nevertheless,
the mass flow rates from both numerical schemes are quite
close, as the MRT-LBM predicts a larger velocity close to
the top plate. When the bottom surface is rough, the accuracy
of the MTR-LBM is reduced significantly. For example, at
Kn = 1 and x2 = 0.1H (i.e., the rough region), the average
horizontal flow velocity from the DVM simulation is two and
a half times larger than that from the MRT-LBM. Possible
reasons for the failure of MRT-LBM include (i) the combined
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FIG. 7. The ratio between the mass flow rates in the rough
(D = 1.5 and ϵ = 2%) and smooth channels. Solid line, DVM;
squares, MRT-LBM from [36].

bounce-back and specular-reflection boundary condition is
only derived in a large flat plate, which may not work in a rough
surface, and (ii) for the nonplane surface, the “wall-scaling”
of the relaxation time may not work properly. Actually, it has
been observed that the extended NS equations incorporating
a wall-scaling model cannot give a correct prediction in
velocity profiles even for a simple circular cylinder flow when
Kn > 0.4 [38].

We then consider the influence of the surface roughness on
the mass flow rate. As in Ref. [36], we study how the following
ratio,

Q∗ = Qr

Qs

, (32)

changes with the Knudsen number. Here Qr and Qs are the
average mass flow rates through the channels with rough and
smooth surfaces, respectively. For the smooth channel with a
diffuse boundary condition, our numerical simulations show
that Qs is always 0.5 in the whole flow regime. This can
actually be proven in the continuum and slip flow regimes using
the NS equations with the first-order velocity slip boundary
condition, and in the free-molecular flow regime using the gas
kinetic theory. The numerical results for the fractal surface with
D = 1.5 and ϵ = 2% are shown in Fig. 7. Clearly, the accuracy
of MRT-LBM decreases as the Knudsen number increases. At
Kn = 10, Q∗ obtained from MRT-LBM is about 25% smaller
than that from the DVM. This error, however, is in fact very
large by taking into account the fact that the value of Q∗

only decreases by 20% from the continuum flow regime to the
free-molecular flow regime with Kn = 10. In this sense, the
MRT-LBM overestimates the decrease of mass flow rate Q∗

by twice.
We have also investigated the mass flow rate when the

fractal dimension D in Eq. (26) takes different values. Similar
behaviors as that in Figs. 6 and 7 are observed (not shown).
These examples show that the MRT-LBM is not reliable in
simulating Couette flow in rough microchannels.

FIG. 8. Different porous media used in the numerical simulation
[37]. The gas flows from left to right.

V. POISEUILLE FLOW IN POROUS MEDIA

In this section, we further access the accuracy of the
MRT-LBM in simulating rarefied Poiseuille flows through
three porous media (medium 1 with irregular solids; medium 2
with square solids; medium 3 with circular solids), as shown
in Fig. 8. The vertical size of each porous medium is assumed
to be H . The investigation of the rarefied gas flows in porous
media becomes popular due to the shale gas revolution in North
America, and LBM is widely used to calculate the apparent
permeability (a parameter describing how fast the gas can be
extracted) of porous media. We will study the variation of the
apparent permeability with respect to the Knudsen number
using the DVM, and access the accuracy of MRT-LBM with
the “wall scaling” of the relaxation time used in Ref. [37].

The DVM to solve the linearized BGK equation for this
problem can be found in Ref. [45], where the periodic
boundary condition in the horizontal direction is used. We have
also tested that the pressure boundary condition adopted in
Ref. [37] leads to the same value of apparent gas permeability
as long as the pressure difference is very small.
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FIG. 9. The ratio of the apparent gas permeability ka to the
intrinsic permeability k∞ as a function of the equivalent Knudsen
number Kn∗. Results of MRT-LBM simulations are obtained from
Ref. [37].

According to Ref. [45], the apparent gas permeability ka ,
which is normalized by H 2, is calculated by

ka =
√

4
π

QKn, (33)

where Q is the dimensionless mass flow rate.
Since a different porous medium has a different distribution

of pore radius, it will be useful to define the characteristic
length as

H ∗ = H

√
12k∞

φ
, (34)

where φ is the porosity of the porous medium and k∞ is the
intrinsic permeability, i.e., the apparent permeability when
Kn → 0. Hence the equivalent Knudsen number is defined
as

Kn∗ = λ

H ∗ = Kn
H

H ∗ = Kn

√
φ

12k∞
. (35)

The comparison on the apparent gas permeability of the
three porous media at different Kn∗ between the numerical
results from the DVM and MRT-LBM is presented in Fig. 9.
Our DVM simulations show that, for the porous media 1 and
3, the ratio of the apparent gas permeability to the intrinsic
permeability, i.e., ka/k∞, is nearly a linear function of the
Knudsen number Kn∗: The results could be described by the
same fitting form as

ka

k∞
= 1 + cKn∗, (36)

where c = 4.7 and 5.2 for the media 1 and 3, respectively.
However, for the porous medium 2, ka/k∞ obtained from

the DVM is clearly a convex function of Kn∗; in the region
considered in Fig. 9, it can be fitted as

ka

k∞
= 1 + 7Kn∗ + 0.13(Kn∗)2. (37)

The MRT-LBM results in Fig. 9 are obtained from Ref. [37],
where the authors presented a few data points for the three
types of porous media for Kn∗ ranging from 0.01 to 6.26.
Then these MRT-LBM data were used to verify the accuracy
of two commonly used semiempirical models for estimation
of apparent permeability [48,49]. It is worth noting that these
empirical analytical models are derived for Poiseuille flow
through plane plates and/or cylindrical capillaries instead
of the complex porous media, based on the Navier-Stokes
equations with the first-order velocity slip boundary condition
or the kinetic theory. From the comparison in Fig. 9, we find
that (1) for the three porous media, both DVM and MRT-LBM
results agree well with each other in slip and early transitional
flow regimes, and (2) as the Knudsen number increases,
notable discrepancies are observed between DVM and MRT-
LBM results, e.g., the apparent permeability from DVM for
medium 1 is larger than that from MRT-LBM by about 10% at
Kn∗ ≃ 6.26; even worse, the apparent permeability predicted
from the MRT-LBM at Kn∗ ≃ 3.45 is nearly half of that from
the DVM. Note that there is no available data to assess the
performance of the MRT-LBM for medium 3 at large Kn
numbers; since there are only a few MRT-LBM data points,
it is hard to estimate an upper bound of the Knudsen number,
above which the MRT-LBM might become problematic in
estimating the apparent gas permeability.

In general, the MTR-LBM might not describe the variation
of the apparent gas permeability with respect to the shape
and configuration of pores in porous media at large Knudsen
numbers, and should not be viewed as an accurate numerical
method to simulate rarefied gas flows in porous media.

VI. POISEUILLE AND COUETTE FLOWS IN SQUARE
CYLINDER CHANNEL

Finally, we consider the flows in a microchannel with
a square cylinder placed at the center region; see Fig. 10.
Poiseuille flow in such a channel was used to discuss the

FIG. 10. The geometry for the simulation of gas flows around a
square cylinder in a microchannel. Shaded regions are solids. The
channel height and width are set as H , while the dimensions of the
cylinder are set as l×l.
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applicability and limitations of the MRT-LBM for simulating
complex flows in the slip-flow regime [50]. It is easy to
understand that, when one wants to discuss the applicability
of a simulation method for engineering problems, a model
verification only in canonical flows with simple geometries
is not sufficient. However, as far as we are aware of, there
are not enough benchmarking tests of complex microflows in
the literature. Thereby, the authors only used the normalized
velocity profiles from the molecular dynamics (MD) simula-
tion to verify the MRT-LBM at Kn ≃ 0.1 in Refs. [37,50].
However, there is a clear deficiency in these comparisons
between the MD and MRT-LBM: In the MRT-LBM the
diffuse boundary condition for the gas-wall interaction is used,
while in MD simulation the gas-wall interaction is deter-
mined by the intermolecular potential. Therefore, it is very
likely that the gas-wall interaction results in a nonunitary
tangential momentum accommodation coefficient, as observed
in Ref. [51]; the accuracy of the MRT-LBM in simulating
rarefied gas flows cannot be justified even when its results
agree well with the MD simulation.

In the present paper, based on the DVM simulation of
rarefied gas flows around a square cylinder in a microchannel,
we intend to provide a set of benchmarking data for a strict test
of the MRT-LBM in simulating complex micro- or nanoscale
gas flows, or for the future development of efficient numerical
techniques for rarefied gas flow simulations.

To account for the influence of the gas-wall interaction, we
use different values of the tangential momentum accommoda-
tion coefficient in Eq. (8). Both the Poiseuille flow driven by
a constant acceleration a1 = 1 in the x1 direction and Couette
flow driven by the top moving plate are considered. The
apparent permeability (33) for Poiseuille flow and normalized
mass flow rate (31) for Couette flow are obtained under a
wide range of Kn. We also consider l = 0.2H and 0.5H to
study the effect of the square dimension; see Fig. 10. The inlet
and outlet boundaries are set as periodic boundary condition

FIG. 11. The variation of the apparent gas permeability of the
Poiseuille flow around a square cylinder of dimension 0.2H×0.2H

in a microchannel, as a function of the Knudsen number, at
three different values of the tangential momentum accommodation
coefficient. Results indicated by “Cercignani” are calculated using
the dimensionless flow rates by Cercignani and Daneri [43].

FIG. 12. The horizontal velocity profile in the Poiseuille flow
around a square cylinder of dimension 0.2H×0.2H in a microchan-
nel; the influence of the Knudsen number and tangential momentum
accommodation coefficient α. Solid lines, α = 1.0; dotted lines,
α = 0.5. The Knudsen numbers in the first and second rows are
Kn = 0.1 and 1, respectively. The velocity profiles for α = 0.8 are
not shown, as they are located between those for α = 1 and α = 0.5.

and thus the calculated domain is regarded as part of an
infinite cylinder array set in a microchannel. For all numerical
simulations, 117 grid points are put in both x1 and x2 directions
with refinement in the vicinity of walls. A convergence
study shows that further increasing the numbers of grid
points would improve the solutions by a magnitude no more
than 0.5%.

FIG. 13. The mass flow rate of the Couette flow around a square
cylinder of dimension 0.2H×0.2H in a microchannel.
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FIG. 14. The horizontal velocity profile in the Couette flow
around a square cylinder of dimension 0.2H×0.2H in a microchan-
nel. Solid lines, α = 1; dotted lines, α = 0.5. The Knudsen numbers
in the first and second rows are Kn = 0.1 and 1, respectively. For
clarity, the results of Kn = 0.8 are not shown, but they lie between
the results of Kn = 1 and 0.5.

Figure 11 shows the apparent gas permeability of the
Poiseuille flow around a square cylinder of dimension
0.2H×0.2H in a microchannel. The 2D molecular velocity
space is discretized by Eq. (16) with Nv = 32, except in the
case of α = 0.5 we choose Nv = 64 at Kn ≈ 10. We also
include the results for channel flow without the cylinder for
reference. It is noted that the appearance of the obstruction
reduces the apparent gas permeability ka due to the additional
friction. For instance, when Kn = α = 1, ka is decreased
from 0.8639 to 0.3801. As the accommodation coefficient α
decreases (more molecules bounce specularly from walls), ka

gradually rises due to the increased velocity slip at the wall
(see Fig. 12); when Kn=1, we have ka = 0.4497 and 0.5970
when α = 0.8 and 0.5, respectively.

Figure 13 shows the average mass flow rates Q for the
Couette flow in the same microchannel. DVM solutions with
Nv = 64 are considered as converged, since decreasing Nv to
32 only results in a change of mass flow rate less than 2.5%.
Note that when there is no obstacle between the two parallel
plates, the mass flow rate is always 0.5 when the tangential
momentum accommodation coefficient is 1. In the presence
of the obstruction, average mass flow rates are reduced by
more than 50%. For example, at Kn = 0.1 and α = 1, Q is
equal to 0.2427 for channel flow around a square cylinder.
We also plot the horizontal velocity u1 along vertical lines at
x1 = 0, x1 = 0.25, and x1 = 0.5 in Fig. 14. We define ū1,up
and ū1,lo as the average horizontal flow velocity within the
upper half region ([0.0,1.0]×[0.5,1.0]) and lower half region
([0.0,1.0]×[0.0,0.5]), respectively. Then, further investigation
shows that ū1,up = 0.3030, ū1,lo = 0.0326 for flow around
cylinder at Kn = 0.1 and α = 1, while those for flow in
an empty channel are ū1,up = 0.7128, ū1,lo = 0.2926. This
indicates that the shear driven flow below the cylinder is
suppressed significantly. Moreover, as the accommodation
coefficient α decreases, Q is further reduced since the velocity
slip near the top plate decreases fast while that near the bottom
plate increases only a bit. This is in sharp contrast to the
Poiseuille flow, where the mass flow rate (or equivalently the
apparent permeability) increases when α decreases.

Finally, we plot the apparent permeability in Poiseuille
flow and the mass flow rate in Couette flow in Fig. 15, when
the size of the square cylinder in Fig. 10 is 0.5H×0.5H . As
expected, they further decrease due to the reduction of flow
passage when compared to flows passing a smaller cylinder.
For example, when α = 1, ka is now equal to 0.1297 when
Kn = 1, while Q is equal to 0.1299 when Kn = 0.1. The
effect of the tangential momentum accommodation coefficient
on ka and Q is similar to that for the cylinder of 0.2H×0.2H .
It is also interesting to note that the mass flow rates in Couette
flow always decrease when Kn increases for the obstruction
of dimensions 0.5H×0.5H , while for the obstruction of
dimensions 0.2H×0.2H , the mass flow rates first increase
and then decrease when Kn increases, at α = 1 and 0.8 (see
Fig. 13).

FIG. 15. The apparent gas permeability of the Poiseuille flow (left) and the mass flow rates of the Couette flow (right) around a square
cylinder of dimensions 0.5H×0.5H in a microchannel.
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VII. CONCLUSIONS

In summary, we have conducted a systematic assessment
of the accuracy of the MRT-LBM with a “wall scaling”
of the relaxation time in simulating rarefied gas flows in
rough microchannels and complex porous media, over a wide
range of the Knudsen number. By solving the linearized
BGK equation accurately via the DVM, we have shown the
following:

(1) For Couette flow in microchannels, the MRT-LBM can
predict the velocity profile with high accuracy in the slip flow
regime, when the two surfaces are smooth. However, as the
Knudsen number increases or surface roughness emerges, the
MRT-LBM losses accuracy in predicting the velocity slip and
mass flow rate. It even becomes very inaccurate when the
Knudsen number is one.

(2) For Poiseuille flow through porous media, the apparent
gas permeabilities in complex media with different shape and
configuration of pores could not be described by a single
polynomial fitting. The permeabilities predicted by the MRT-
LBM agree well with those from the DVM at small Knudsen
numbers. However, as the degree of rarefaction increases, large
discrepancies emerge between the results from the MRT-LBM
and DVM. In one of the cases considered, the MRT-LBM
underestimates the apparent permeability by nearly twice.

Therefore, for rarefied gas flows through rough surface
and complex porous media, the MRT-LBM should not be
viewed as an accurate method. Possible reasons for the failure
of the MRT-LBM include (i) the combined bounce-back
and specular-reflection boundary condition is only derived
in a large flat plate, which may not work in an irregular
surface, and (ii) for complex geometries, the “wall scaling”
of the relaxation time may not work properly. In our opinion,
the MRT-LBM with the “wall-scaling” relaxation time is

a numerical technique attempted to capture the rarefaction
effects, which cannot be considered as an appropriate kinetic
model to describe the real physical system. This is because,
theoretically, if the continuous molecular velocity space is
discretized by enough velocity points, one should get accurate
results. The original BGK model has been proven accurate
when enough appropriate discrete velocities is adopted. How-
ever, if the modified BGK model with the “wall-scaling”
relaxation time is solved with the same discrete velocities, it
will give different solutions, which are incorrect. Nevertheless,
it may be still attractive if one can design appropriate boundary
conditions and effective relaxation times for general porous
media flows in the framework of the MRT-LBM, due to its
simplicity and the less-demanding memory cost.

To this end, the accurate DVM has been used to simulate
channel flows around a square cylinder of two different sizes.
A set of data on apparent gas permeability for Poiseuille flow
and mass flow rates for Couette flow, as well as the velocity
profiles, are obtained under a wide range of Knudsen numbers,
and different tangential momentum accommodation coeffi-
cients in the Maxwell’s diffuse-specular gas-surface boundary
condition. Our simulation results from the DVM with enough
discrete velocity grids could serve as benchmarking cases for
future development of the LBM for modeling and simulation
of low-speed rarefied gas flows in complex geometry.
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