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Abstract A stable high-order Runge-Kutta discontinuous Galerkin (RKDG) scheme
that strictly preserves positivity of the solution is designed to solve the Boltzmann ki-
netic equation with model collision integrals. Stability is kept by accuracy of velocity
discretization, conservative calculation of the discrete collision relaxation term, and a
limiter. By keeping the time step smaller than the local mean collision time and forcing
positivity values of velocity distribution functions on certain points, the limiter can pre-
serve positivity of solutions to the cell average velocity distribution functions. Verification
is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about
a two-dimensional (2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock
tube flow. The results show that, the scheme is stable and accurate to capture shock
structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two
widely used limiters, the current limiter has the advantage of easy implementation and
ability of minimizing the influence of accuracy of the original RKDG method.
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1 Introduction

Accurate physical models and efficient numerical methods for the solution to the Boltzmann
equation are required for predicting the non-equilibrium transport phenomena of the rarefied
gas flows encountered in high-altitude aerodynamics, vacuum technology, and micro-electro-
mechanical systems (MEMS). Deterministic solvers of the Boltzmann equation[1] have been
widely developed due to their efficiency in resolving near continuum flows, micro-scale flows,
and unsteady flows[2], as well as their directness in coupling the continuum computational fluid
dynamics (CFD) and deterministic structural, thermal, and electrostatic modelling[3]. The
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deterministic approaches are attributed to the discrete ordinate method (DOM)[4], which also
corresponds to the discrete velocity method, in which the control equations are firstly discretized
in the velocity space and cast into a system of partial differential equations depending on phys-
ical coordinates and time only. Then, the discrete equations are solved using the traditional
CFD methods. Recently, this method is attractive for the simulation of a flow surrounding a
re-entry flying object at the hypersonic speed in transitional regimes[5].

The finite difference method (FDM) and finite volume method (FVM) have been widely de-
veloped for the deterministic solutions to the Boltzmann equation or kinetic models[6–10]. The
Runge-Kutta discontinuous Galerkin (RKDG) method is another high-order discrete formalism
based on the finite element method (FEM)[11]. This method is well suited for the solutions to
the time-dependent hyperbolic equations. One of the most attractive features of this method
is its ability to naturally obtain fluxes both in the interior and at the boundaries of a domain
with the same high-order accuracy[12–13]. This is especially important for applications of non-
equilibrium flow analysis where stress and heat flux distributions on the solid boundaries are the
main quantities of interest. Other advantages include easy formulations on irregular meshes,
straightforward implementation of boundary conditions, as well as efficient parallel computa-
tion due to compactness of the scheme[14]. This method has been successfully used to model
a wide range of physical phenomena such as fluid dynamics, electromagnetics, aeroacoustics,
and advection of contaminants. Recently, the RKDG method is used to solve the Boltzmann
equations for the simulation of rarefied gaseous flow[15–20].

The RKDG method resolves solutions in the piecewise finite element space combining with
an explicit-multistep Runge-Kutta time marching. Borrowing from the FVM and FDM, the
numerical fluxes are evaluated at edges of the physical elements. This approach is a shock-
capture scheme, which may automatically capture discontinuities in solutions even if the ini-
tial conditions are smooth. It has been proven that this method is energy stable so that it
could directly be used to solve control equations with smooth solutions or solutions with weak
discontinuities[21]. However, when strong shock waves appear in the flow field, the approxi-
mate solutions may exhibit spurious oscillations, which generate non-physical data and lead to
instability. Usually, some forms of limiters are used to deal with the non-physical oscillations
in the presence of strong discontinuities. Treated as a post processor of the approximate so-
lutions, a limiter uses a new polynomial with the same order of degree to replace the old one
which is deemed to contain oscillations. Several limiters have been designed, such as the total
variation diminishing (TVD) limiters[22], the total variation bounded (TVB) limiters[23], the
moment-based limiters[24–25], the weighted essentially non-oscillatory (WENO) limiters[26–27],
and recently the bound-preserving limiters[28–29].

To achieve the non-oscillatory property for strong shocks is one of the bottlenecks to the
development of the discontinuous Galerkin (DG) based method. To our best knowledge, none of
the previous research works about the RKDG solvers of the Boltzmann equations emphasized on
the stability of the scheme and were specially designed for hypersonic rarefied gaseous flows. In
this work, we develop a stable deterministic solver for the Boltzmann kinetic model equations.
Three essences determine the stability as follows: (i) the accuracy of the velocity discretization,
(ii) the conservation of the collision terms, (iii) a limiter. Based on the maximum-principle-
satisfying scheme for scalar conservation laws[29], a positivity-preserving limiter is designed
for the kinetic models with the source term. The remainder of the paper is organized as fol-
lows. In Section 2, the basic numerical method is described with emphasis on the velocity
discretization and conservative calculation of the collision relaxation term. In Section 3, the
positivity-preserving limiter is illustrated in detail. The normal shock with the Mach number
2.05, the hypersonic flow about a two-dimensional (2D) cylinder with Mach numbers 6.0 and
12.0, and an unsteady shock tube flow are used to verify the proposed solver in Section 4.
Finally, the paper is closed with some conclusions in Section 5.
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2 Kinetic models and basic RKDG method

2.1 Boltzmann kinetic model equations
Due to the presence of the collision integral term, the Boltzmann equation is difficult to solve

with analytical or deterministic methods, and therefore the kinetic model equation is usually
used as an alternative control system. In the kinetic model, the original Boltzmann equation
is reduced to a relatively simpler partial differential equation by introducing the collision re-
laxation term, which is much easier but can reproduce the important kinetic properties of the
gaseous flows. The two frequently used forms, i.e., the Bhatnagar-Gross-Krook (BGK)[30] and
the ellipsoidal statistical BGK (ES-BGK)[31] models, are used. The kinetic model equation is
written as

∂f

∂t
+ c · ∂f

∂r
= ν(fE − f), (1)

where f is the distribution function of molecular velocities, which is defined so that f(t, r, c)drdc
is the number of molecules at the time instant t, with velocity components lying within the
limits c and c + dc, and spatial coordinates lying within the limits r and r + dr. fE denotes
a suitable distribution under an equilibrium. In the standard BGK model which corresponds
to the gas Prandtl number Pr = 1 for monatomic gases, fE is the local Maxwell distribution,
while in the ES-BGK model, fE is the local anisotropic Gaussian. ν is the collision frequency
given as

ν = Pr
p

µ
, (2)

where p is the local gas pressure, and µ is the viscosity coefficient. An arbitrary viscosity law
could be specified, and a power-law coefficient µ = µref(T/Tref)

ω is used with the reference
properties µref , Tref , and ω given by Bird[32]. The Prandtl number is a free parameter allowing
the ES-BGK collision model to reproduce both the viscosity and thermal conductivity corre-
sponding to an arbitrary Pr[33]. Therefore, the BGK model is a special case of the ES-BGK
for Pr = 1.

In order to reduce the round-off error during the numerical procedure, all the variables and
functions need to be non-dimensionalized. Let L, n0, and T0 be reference dimensional values of
the length, number density, and temperature. Then, the reference velocity is u0 =

√
2RT0,

the reference time is t0 = L/u0, the reference pressure is p0 = n0kT0, and the reference
viscosity is n0kT0L/u0, where R and k are the gas constant and the Boltzmann constant,
respectively. Finally, the velocity distribution functions including the local equilibrium are
non-dimensionalized by n0/(2RT0)

3/2. The non-dimensional macroscopic gas flow parameters
are obtained by integrating the distribution functions over the velocity phase,

ñ =

∫ ∞

−∞

f̃dc̃, ũ =
1

ñ

∫ ∞

−∞

c̃f̃dc, T̃ =
2

3ñ

∫ ∞

−∞

(c̃ − ũ)2f̃dc̃. (3)

In the remainder of the paper, the tilde symbols denoting the non-dimensional variables will be
omitted.
2.2 Discrete velocity model

The velocity distribution function is continuous in the velocity and physics spaces. The DOM
method chooses a set of values of the velocity cj = (cj1

x , cj2
y , cj3

z ) and interpolates the distribution

function in terms of its values corresponding to the discrete velocities, i.e., f j(t, r) = f(t, r, cj).
Therefore, the kinetic model equation is replaced by a system of differential equations for the
function f j(t, r), which is dependent on physical ordinates and time only. The differential
equations can be solved numerically by a certain CFD method. Then, the macroscopic param-
eters calculated from the exact integration over the velocity space are approximated from some
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quadrature. Both the Cartesian and spherical meshes have been developed for the velocity
discretization[20]. The Cartesian mesh adopts the composite Newton-Cotes formulas, thus it
has finite limits which must be chosen carefully to ensure that the effects of the tails of the
distribution function are negligible, while the spherical mesh involves the Gaussian-Laguerre
quadrature and has no bound limitation. The accuracy of the velocity discretization highly
depends on the localization of the distributions. Figure 1 shows the non-dimensionalized x-
velocity distribution functions of upstream and downstream for normal shock waves with the
Mach numbers 1.55 and 9.0. The values are obtained according to an argon gas with the
upstream density 1.067 × 10−4 kg/m

3
and the temperature 300 K. Therefore, for hypersonic

flows, as the Mach number increases, the appropriate velocity range could become quite wide,
and a large number of discrete velocities are needed to meet the accuracy requirement. Be-
sides, the distribution function could change sharply in a small limit of the molecular velocity,
which infers that the discrete velocities might become very dense. Although the Gaussian-
Laguerre quadrature gives an optimal approximation, the quadrature points and weights are
very difficult to calculate as the number of quadrature points increases. Thus, the composite
Newton-Cotes formulae are more convenient[6]. In this work, the second-order mid-point rule
and the fourth-order Simpson’s rule, i.e., the three-point quadrature[34] is used.

Fig. 1 Non-dimensionalized x-velocity distribution functions (normalized by number density n) of
upstream and downstream in shock wave

2.3 DG formulation and conservative discretization of collision term
The control system which is discrete in the velocity space will be solved using the RKDG

method on the 2D unstructured mesh. The 2D computational domain is partitioned with
triangulations {∆i}M

i=1, and the approximate solutions f j(t, r) are sought in the finite element
space of piecewise polynomials P k(∆i) of degree at most k defined on ∆i. Then, the method
is uniformly (k + 1)th-order accurate[11]. In the DG method, the solution as well as the test
function space is given by {ϕ(x, y)|∆i

∈P k(∆i)}. A local orthogonal basis[27] is used here, and
the approximate solutions are expressed as

f j(t, x, y) =
K∑

l=0

F j
l (t)ϕi

l(x, y), K =
(k + 1)(k + 2)

2
− 1, (4)

where F j
l (t) is the degree of freedom, and the first one F j

0 is the average value on the local
triangular cell. In order to determine the approximate solution, the standard technique of the
finite element method is used to obtain the weak formulations,

d

dt
F j

l =
1

wl

(
cj ·

∫

∆i

f j∇rϕ
i
ldxdy −

∫

e

hj
eϕ

i
ldΓ +

∫

∆i

ν(f j
E − f j)ϕldxdy

)
, (5)
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where wl is the diagonal component of the mass matrix, and hj
e is the numerical flux. Since

the values of f j at the edges of the triangles calculated from the adjacent cells are not required
equally, the fluxes borrowed from the FVM and FDM are calculated based on Riemann solvers.
In this work, the simplest upwind scheme is used, and we write it as

hj
e = h(f j

e,int, f
j
e,ext, ne) =

1

2
(cj · nef

j
e,int + cj · nef

j
e,ext − |c · ne|(f j

e,ext − f j
e,int)). (6)

Here, ne is the outward unit normal to the edge, f j
e,int is the approximate solution obtained

from the interior of the triangle ∆i, and f j
e,ext is the one obtained from the exterior of ∆i. It

is easy to show that the upwind flux satisfies the conservativity and consistency,

h
(
f j

e,int, f j
e,ext, ne

)
= −h

(
f j

e,ext, f j
e,int, −ne

)
, h

(
f j

e , f j
e , ne

)
= cj · nef

j
e . (7)

Moreover, five different types of boundary conditions, including the symmetric boundary, the
specular-diffuse moving wall with the given accommodation coefficient, the periodic boundaries,
the far-pressure inlet/outlet boundaries, and supersonic inlet/outlet boundaries, are incorpo-

rated to specify the boundary values of fext
[20].

The resulting system of ordinary differential equations, i.e., Eq. (5), is discretized in time by
a special class of explicit TVD Runge-Kutta schemes[35]. For the DG discretization in the P k

space, the Runge-Kutta time marching is required with at least (k+1)th-order accuracy[11]. At
each intermediate time step, the discrete local equilibrium distribution f j

E is specified such that
the mass, momentum and energy conservations are enforced in the collision relaxation term.
The equilibrium distribution which satisfies the minimization of entropy has the form[36],

f j
E=





exp(a1−a2(c

j−u)2+a3(c
j
x−u)+a4(c

j
y−v)), BGK,

exp(a1−a2(c
j
x−u)2+a3(c

j
x−u)−a4(c

j
y−v)2+a5(c

j
y−v)+a6c

j
xcj

y−a7c
j
z), ES−BGK.

(8)

In order to be consistent with the weak formulation of the DG method and to retain the
high-order accuracy, the unknown coefficient as is also sought in the finite element space,

as(x, y) =
K∑

l=0

Al
sϕ

l
i(x, y). (9)

The 4(K +1) or 7(K +1) unknown coefficients Al
s are found from the weak formulations of the

conservative law in the collision relaxation term. As an example, the weak formulation of the
mass conservation is written as

N∑

j=0

(( ∫

∆i

ν
(
f j
E −

K∑

l=0

F j
l ϕl

))
ϕmdxdy

)
∆cx∆cy∆cz , m = 0, 1, · · · , K. (10)

The yielded non-linear equations are solved iteratively using the Newton’s method. More details
can be found in Ref. [20]. In this way, the discrete collision term does not give rise to any
source or sink of mass, momentum or energy. The conservative nature with respect to the
collision relaxation term is very essential to iteration stability, especially for flow at the low Kn
number[37–38].

3 Courant-Friedrichs-Lewy (CFL) condition and positivity-preserving lim-
iter for hypersonic rarefied flow

The RKDG scheme is a shock-capture scheme, which may automatically capture the dis-
continuities in solutions even if the initial conditions are smooth. This method is energy stable
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so that it could directly be used to solve control equations with smooth solutions or solutions
with weak discontinuities[21]. However, for solutions with strong shocks, the RKDG scheme will
generate spurious oscillations near discontinuities. Because of oscillations, the numerical solu-
tions to the velocity distribution functions may become negative, which is either non-physical
or could lead to instability and non-convergence of iterations. Usually, some forms of limiters
are used to keep the scheme stable. As a post processor of the approximate solutions, a lim-
iter uses a new polynomial to replace the old one which is deemed to contain oscillations or
non-physical values. In order to obtain reasonable results, the new polynomials are required
to keep the accuracy and conservativity of the solutions. The most widely used limiter is the
so-called TVB limiter[11]. However, the TVB limiters involve a parameter which should be
chosen by the user for different test cases. Therefore, these limiters may take effect in certain
smooth cells and destroy accuracy in these cells. The WENO limiters[15–26] can maintain the
high-order accuracy even if they take effect in smooth cells. However, these limiters need to
use the information from not only the immediate neighboring cells but also neighbors’ neigh-
bors, making its implementation complicated in multi-dimensions[26]. In Refs. [28]–[29], special
limiters have been developed to preserve the maximum principle for DG and FVM schemes
solving the 2D scalar conservation law on triangular meshes and to preserve positivity for DG
schemes solving one-dimensional compressible Euler equations involving source terms. This
kind of limiters can preserve strict bounds as well as maintain high-order accuracy. Besides, it
is very easy to be implemented. With the same methodology, a positivity-preserving limiter to
solve the Boltzmann kinetic model equations on arbitrary triangular meshes is designed, which
is independent of the discrete collision operator.

The Boltzmann kinetic model equations are scalar conservative laws with source terms. First
of all, applying the first-order forward Euler time discretization to the first weak formulations
(see Eq. (5)), i.e., the control equations for cell averages f∆i

, we have

f
n+1

∆i
= f

n

∆i
− ∆t

|∆i|

3∑

e=1

∫

e

h(fn
e,int, f

n
e,ext, ne)dΓ + ∆tν(fE − f)

n

∆i
. (11)

Here, the superscript n indicates the time step, and the discrete velocity index j has been
omitted. For the P k methods, the quadrature rules for the edges must be exact for polynomials
of degree 2k + 1[11], so that the (k + 1)-point Gaussian rule is used to approximate the edge
integral

∫
e
dΓ. Then, Eq. (11) becomes

f
n+1

∆i
= f

n

∆i
− ∆t

|∆i|

3∑

e=1

k+1∑

β=1

ωβh(fn,β
e,int, f

n,β
e,ext, ne)se + ∆tν(fE − f)

n

∆i
, (12)

where ωβ is the quadrature weight of the Gauss rule on the interval [− 1
2 , 1

2 ] with
k+1∑
β=1

ωβ = 1,

and se is the length of the edge e. In order to rewrite the right hand side of Eq. (12) as
a monotonically increasing function of some point values of fn under a certain CFL condi-
tion, a special rule is introduced to discretize the triangular integral[29]. The rule combines
with the 3-point Gauss-Lobatto rule and the (k + 1)-point Gaussian rule, which is exact for
a polynomial f(x, y) if its degree is not larger than k. Given the points and weights of the

Gauss-Lobatto rule on the interval [−1

2
, 1

2 ] as {uα, wα(α = 1, 2, 3)} and the ones of Gaussian

rule as {vβ , ωβ(β = 1, 2, · · · , k + 1)}, the triangle quadrature points indicated by area coordi-
nates xδ(x, y) = (ξ1, ξ2, ξ3)δ and their relative weights Wδ are listed in Table 1. The quadrature
points contain 3(k+1) points on the triangle edges which are coincident with the ones of Gaus-
sian quadrature rule, and another 3(k + 1) points on the interior of the triangle. Then, the cell
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average value Q
n

∆i
is expressed as

Q
n

∆i
=

3∑

e=1

k+1∑

β=1

2

3
w1ωβQn,β

e,int +

3(k+1)∑

γ=1

Qn
int,γw̃γ , (13)

where Qn
int,γ is the point value of the interior, and w̃γ is the weight.

Table 1 Quadrature points and weights for triangles

ξ1 ξ2 ξ3 W/|∆i|

Edge point

0
1

2
+ vβ

1

2
− vβ

2

3
w1ωβ

1

2
+ vβ 0

1

2
− vβ

2

3
w1ωβ

1

2
+ vβ

1

2
− vβ 0

2

3
w1ωβ

Interior point

1

2
+ vβ

“ 1

2
+ u2

”“1

2
− vβ

” “1

2
− u2

”“1

2
− vβ

” 2

3

„

1

2
− vβ

«

w2ωβ

“1

2
− u2

”“1

2
− vβ

” 1

2
+ vβ

“1

2
+ u2

”“1

2
− vβ

” 2

3

„

1

2
− vβ

«

w2ωβ

“1

2
+ u2

”“1

2
− vβ

” “ 1

2
− u2

”“1

2
− vβ

” 1

2
+ vβ

2

3

“1

2
− vβ

”

w2ωβ

With the conservativity of the flux, the flux integral is decomposed as

3∑

e=1

h
(
fn,β

e,int, fn,β
e,ext, ne

)
se = h

(
fn,β
1,int, fn,β

1,ext, n1

)
s1 + h

(
fn,β
2,int, fn,β

2,ext, n2

)
s2

+ h
(
fn,β
3,int, fn,β

3,ext, n3

)
s3

= h
(
fn,β
1,int, fn,β

1,ext, n1

)
s1 + h

(
fn,β
1,int, fn,β

2,int, −n1

)
s1

+ h
(
fn,β
2,int, fn,β

1,int, n1

)
s1 + h

(
fn,β
2,int, fn,β

2,ext, n2

)
s2

+ h
(
fn,β
2,int, fn,β

3,int, n3

)
s3 + h

(
fn,β
3,int, fn,β

2,int, −n3

)
s3

+ h
(
fn,β
3,int, fn,β

3,ext, n3

)
s3. (14)

Then, substituting Eqs. (13) and (14) into Eq. (12), we obtain

f
n+1

∆i
=

k+1∑

β=1

2

3
w1ωβ(H1,β + H2,β + H3,β) +

3(k+1)∑

γ=1

w̃γ(1 − ∆tνint,γ)fn
int,γ

+ ∆t
3∑

e=1

k+1∑

β=1

2

3
w1ωβνe,βfE

e,β + ∆t

3(k+1)∑

γ=1

w̃γνint,γfE
int,γ , (15)

where νe,β , νint,γ , fE
e,β, and fE

int,γ are the point values of the collision frequency and the equi-
librium distribution, and they are all positive values due to the ways through which they are
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calculated. The functions He,β are





H1,β = (1−∆tν1,β)fn, β
1, int−

3∆t

2w1|∆i|
(h(fn,β

1,int, fn,β
1,ext, n1)s1 + h(fn,β

1,int, fn,β
2,int, −n1)s1),

H2,β = (1−∆tν2,β)fn,β
2,int−

3∆t

2w1|∆i|
(h(fn,β

2,int, fn,β
1,int, n1)s1

+h(fn,β
2,int, fn,β

2,ext, n2)s2+h(fn,β
2,int, fn,β

3,int, n3)s3),

H3,β = (1−∆tν2,β)fn,β
2,int−

3∆t

2w1|∆i|
(h(fn,β

3,int, fn,β
2,int, −n3)s3+h(fn,β

3,int, fn,β
3,ext, n3)s3).

(16)

Taken H2,β as an example to discuss its property, the function is rewritten as

H2,β =
(
1−∆tν2,β−

3∆t

2w1|∆i|
·

3∑
e=1

|c · ne|se

2

)
fn,β
2,int−

3∆t

4w1|∆i|

3∑

e=1

se(c · ne−|c · ne|)fn,β
e,int. (17)

Therefore, under the following condition:

1 − ∆tν2,β − 3∆t

2w1|∆i|
·

3∑
e=1

|c · ne|se

2
> 0, (18)

the function H2,β is a monotonically increasing function of fn,β
2,int, fn,β

1,int, fn,β
2,ext, and fn,β

3,int. Simi-
larly, under the condition, i.e.,

1 − ∆tν1,β − 3∆t

2w1|∆i|
· |c · n1|s1 > 0, 1 − ∆tν3,β − 3∆t

2w1|∆i|
· |c · n3|s3 > 0, (19)

the functions H1,β and H3,β are also monotonically increasing functions of the point values.
Finally, writing the right-hand side of Eq. (15) as a function of all the point values of fn,

this function is monotonically increasing with respect to each argument under Eqs. (18) and
(19) plus (1 − ∆tνint,γ) > 0. Therefore, if all the point values fn(xδ) at the time step tn are

non-negative, the average value f
n+1

∆i
will still be positive at the next time step tn+1. The

similar result holds for other monotone fluxes[29].
Now, we obtain the sufficient conditions to preserve the positivity of the distribution func-

tions. Firstly, the time interval should satisfy the CFL condition,

∆t 6
1

A + νmax
, A =

3

2w1|∆i|
max

(1

2

3∑

e=1

|cj · ne|se, |c · ne|se

)
, (20)

where w1 = 1
6 , and νmax is the maximum collision frequency, and therefore the time interval

must be smaller than the minimum mean collision time. Secondly, the values of the distribution
functions on the quadrature points xδ should be positive, which are achieved by a linear scaling
limiter[29]. At each time step, the new polynomial fnew

∆i
(x, y) is constructed to replace the

solution fn
∆i

(x, y), which is defined as

fnew
∆i

(x, y) = θ(fn
∆i

(x, y) − f
n

∆i
) + f

n

∆i
, θ = min

( f
n

∆i
− ǫ

f
n

∆i
− fmin

, 1
)

(21)

with

fmin = min
δ

fk
∆i

(xδ), ǫ = min
i

(
10−20, |fn

∆i
|
)
.
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This limiter retains the accuracy and conservativity of the solutions[39]. Since the high-order
Runge-Kutta time discretization is a convex combination of the forward Euler scheme, the full
scheme with the high-order time discretization still satisfies the positivity preserving property
on the cell average values[29].

4 Results and discussion

In this section, we provide numerical results to demonstrate the performance of the proposed
scheme for the solutions of hypersonic rarefied gaseous flow. The density and temperature pro-
files of the flow fields are obtained using the second- and third-order RKDG schemes. The
solutions are compared with those obtained from experimental data, direct simulation Monte
Carlo (DSMC) method as well as analytical calculations. The numerical schemes are imple-
mented in C++, and MPI is used for the parallel version of the code. The three cases are all
involved in the near continuum region, where the strong shock wave may occur. The strength
of the discontinuity would be gradually weakened as the Knudsen number increases[40]. As a
result, the troubled cell seldom appears in the large Kn number flow, and the limiter would
not be used then.
4.1 Normal shock wave: accuracy of positivity-preserving limiter

We first test the accuracy of the positivity-preserving limiter. The results presented below
are computed from a normal shock wave in the argon gas at the Mach number Ma1 = 2.05.
Under this Mach number condition, the RKDG schemes are stable even without limiters. The
same parameters as those in the experiment[41] are used here with the upstream density ρ1 =
1.067 × 10−4 kg/m

3
and the temperature T1 = 300 K, corresponding to the mean free path of

the hard sphere model as λ1 = 1.098× 10−3 m. The non-dimensionalized boundary conditions
obtained from the Rankine-Hugoniot relation are shown in Table 2. The reference speed is c0 =√

2RT1. The second-order and third-order RKDG methods are used to solved the 2D/three-
velocity (3V) ES-BGK model on the 2D spatial mesh with the uniform triangulation. The
spatial mesh and boundary conditions are shown in Fig. 2. The length of the domain is 40λ1.
The top and bottom boundaries are taken symmetrical. The left boundary is the hypersonic
inlet with the upstream condition, and the right boundary is a specular wall moving with the
down stream. At the beginning, the x < 0 region is initialized with the upstream condition,
while the x > 0 region is initialized with the downstream one. The velocity grid of 13 ×
13 × 13 discrete velocities with bounds (u2 − 5

√
T2/2, u2 + 5

√
T2/2) in the x-direction and

(−5
√

T2/2, 5
√

T2/2) in the other two directions, and the second-order quadrature rule are used.

Table 2 Conditions across normal shock wave of Mach number Ma1 = 2.05

Property Upstream Downstream

Density 1.0 2.334

Temperature 1.0 2.144

Velocity 1.871 0.802

Fig. 2 Spatial mesh and boundary conditions for normal shock wave
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When the L2 norm of the change in velocity distributions at each time step is less than 10−5,
the steady state solutions are assumed to have been reached.

The obtained results are compared with the DSMC solutions, experimental data, and an-
alytical results. The DSMC simulation uses 300 cells. The average number of molecules per
cell is about 50. About 30 000 iterations with a time step of 7.5 × 10−8 s are needed to reach
the steady state. The macro-parameters are sampled over another 50 000 steps. One of the
important properties of a shock wave with Ma1 >

√
9/5 in a monatomic gas is the overshoot of

temperature associated with the longitudinal component of thermal velocities Tx, which could
be larger than the gas temperature behind the front of the shock due to the non-equilibrium
in translational energies of longitudinal and transversal directions. Tx is related to the number
density n as[42]

Tx

T1
=

1

3

(
(5Ma2

1 + 3)
n1

n
− 5Ma2

1

(n1

n

)2)
. (22)

Here, we use this parameter as an analytical criterion to demonstrate the errors of the RKDG
solutions.

The relative L1 and L∞ errors of the overshoot temperature for the RKDG method with the
positivity-preserving limiter compared with the original RKDG method without a limiter are
shown in Table 3. The downstream parameters are used to determine the time step ∆t. For the
methods without limiter, the L1 and L∞ errors of the overshoot temperature of the second-order
discontinuous Galerkin discretization (DG-2) results on 128 triangles reduce to 5.46×10−4 and
5.37 × 10−3, respectively, while the third-order discontinuous Galerkin discretization (DG-3)
method obtains the results of the same order accuracy on just 32 triangles. For each case under
the same computing conditions, the RKDG scheme combining with the positivity-preserving
limiter uses a bit fewer iterations to get the steady flow field, and the errors of the solutions
are at the same level as the ones from the method without limiter. Therefore, the limiter

keeps the designed order of accuracy. Figure 3 shows the normalized density ρn =
ρ − ρ1

ρ2 − ρ1
and

temperature Tn =
T − T1

T2 − T1
. The solid lines are the profiles of DG-3 solution with limiter on

32 triangles, the dash-dot lines are the density distributions from the experiment, and the dots
illustrate the DSMC results. The proposed scheme captures the normal shock structure very
well.

Table 3 Errors of overshoot temperature of RKDG with limiter compared with ones without limiter

Method
Cell ∆t/ RKDG without limiter RKDG with limiter

number (10−8 s) Iteration L1 error L∞ error Iteration L1 error L∞ error

DG-2

16 7.52 3 181 1.67×10−2 3.18×10−1 3 082 1.56×10−2 1.45×10−1

32 3.95 7 328 3.99×10−3 1.17×10−1 7 247 3.84×10−3 9.95×10−2

64 2.03 15 051 1.15×10−3 2.10×10−2 15 035 1.15×10−3 2.10×10−2

128 1.03 30 046 5.46×10−4 5.37×10−3 30 037 5.46×10−4 5.37×10−3

DG-3

8 13.70 1 524 1.72×10−2 1.53×10−1 1 507 2.39×10−2 1.26×10−1

16 7.52 3 440 3.25×10−3 5.26×10−2 3 340 2.68×10−3 5.12×10−2

32 3.95 7 475 5.39×10−4 2.79×10−3 7 448 5.39×10−4 2.78×10−3

64 2.03 15 118 4.15×10−4 2.04×10−3 15 105 4.15×10−4 2.04×10−3
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Fig. 3 Normalized density and temperature profiles of normal shock wave

4.2 Normal shock wave: compared with TVB and WENO limiters

Then, we use the same normal shock wave case for comparison of the performance of the
positivity-preserving limiter with the widely used TVB and WENO limiters on the simulation
of rarefied gaseous flow. In any cell which is deemed to contain spurious oscillation, i.e., the
troubled cell, the DG polynomial is replaced by a new one of the same degree which is less
oscillatory than the old one. Different limiters compute this new polynomial in different ways.
The TVB limiters are local slope-limiting operators. Here, we implement the one described in
Ref. [11]. The TVB limiters involve a problem-dependent parameter M , related to the value of
the second derivative of the exact solution near smooth extrema[43]. Numerical tests obtained
with various values of M = 10, M = 1, M = 0.1, and M = 0.01 are presented. Generally,
the smaller M is, the more troubled cells are. The WENO limiter is based on the WENO
methodology for finite volume schemes, which reconstructs the polynomials in the troubled cell
using information of neighboring cells. The usual WENO method, which involves the non-linear
combination of a set of polynomials based on the cell averages of neighboring cells to directly
reconstruct the moments[26], is used. In order to minimize the influence of accuracy in smooth
regions, a trouble indicator is also needed. The TVB indicator and the so-called Krivodonova-
Xin-Remacle-Chevaugeon-Flaherty (KXRCF) shock detection[44] are the best choices[45]. Here,
we use the KXRCF indicator in the WENO limiter. In our calculations, the troubled cell
indicators are performed for every discrete velocity distribution function during running. Once
the threshold is satisfied, the approximation of the distribution function would be reconstructed.
Both the TVB and WENO limiters need information from neighboring cells. Ghost cells are
built for cells on boundaries, on which the molecular velocity distribution functions are defined
by agreeing with the boundary conditions.

The shock wave is still in the argon gas at Ma1 = 2.05. The second-order RKDG method
combining with the positivity-preserving limiter, TVB limiter, or WENO limiter is used to solve
the 2D/3V ES-BGK kinetic model on the 2D spatial mesh with 64 uniform triangles. Other
conditions have been described in the previous section. All the cases are run with the same
time step of ∆t = 2.03× 10−8 s according to Eq. (20). However, it should be mentioned that it
is not necessary for TVB and WENO limiters to follow this CFL condition. Each case is run
for 20 000 iterations. Figure 4 shows the residuals, i.e.,

√√√√√√√√

M∑
i=1

N∑
j=1

(
f j
∆i,new − f j

∆i,old

)2

dxdy

M∑
i=1

N∑
j=1

(
f j
∆i,old

)2

dxdy

, (23)
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where f j
∆i,new is the distribution obtained at the current time step, and f j

∆i,old
is the one

obtained at the previous time step. At the first 5 000 iterations, the behaviors of the solvers
are similar to residuals reduced from about 0.2 to 10−3. Thereafter, the residuals separate a
lot. At steps 20 000, the residual of positivity-preserving limiter decreases below 10−5, while
the ones of TVB limiter with M = 10, M = 1, M = 0.1, and M = 0.01, as well as the
one of WENO limiter vibrate at about 1.2 × 10−5, 7.0 × 10−5, 1.0 × 10−5, 2.0 × 10−4, and
3.0 × 10−4, respectively. Figure 5 shows the selected normalized density and temperature
profiles at the 15 035th iteration when the residual of positivity-preserving limiter decreases to
10−5. Table 4 gives the results of residual at the 20 000th iteration, the maximum number of
troubled cells, and errors of Tx at the 15 035th iteration for different limiters. It shows that
the reconstruction using information from neighborhood brings additional round-off errors to
the residual. There exists a best choice of the value M for the TVB limiter, with which the
solver could reproduce an accurate solution. However, the best M is problem-dependent. Up
to now, it cannot be predicted before calculation. The results of TVB limiter coincide well with
the ones obtained from positivity-preserving limiter. The WENO limiter produces results with
notable discrepancy.

Fig. 4 Residual of DG-2 with different limiters

Fig. 5 Normalized density and temperature profiles from DG-2 with different limiters

The comparison indicates that the accuracy of TVB and WENO limiters is highly dependent
on problems. The WENO limiter has the largest error mainly due to that the new polynomial of
WENO is a non-linear combination of nine linear polynomials constructed using the averages on
the troubled cell and on nine neighbouring cells. The combination coefficients are determined
based on the smoothness of the linear polynomials. As a result, the new polynomial takes more
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information from the smoother polynomials. In this case, the gradient only exists along the
axial direction. Therefore, the reconstruction of polynomial is mainly based on the information
from the transversal direction. As a result, ladder-shaped profiles appear in the density and
temperature. Compared with the TVB and WENO limiters, the positivity-preserving limiter
has the advantage of easy implementation. It also possesses the advantages as follows: (i)
The troubled-cell detection automatically embeds into the reconstruction procedures, and no
additional operator and problem-dependent parameters are required; (ii) The reconstructed
polynomials are only dependent on the target piecewise functions, which could minimize the
influence of accuracy of the original RKDG method.

Table 4 Residual at 20 000th iteration, maximum troubled cell number, and error of overshoot
temperature at 15 035th iteration for different limiters

Limiter Residual Maximum troubled cell
Error of Tx

L1 error L∞ error

Positivity-preserving 8.89×10−6 34 1.16×10−3 2.10×10−2

TVB M = 10 1.18×10−5 33 1.16×10−3 2.09×10−2

TVB M = 1 5.44×10−5 35 1.14×10−3 1.79×10−2

TVB M = 0.1 1.09×10−5 43 1.05×10−3 1.50×10−2

TVB M = 0.01 2.29×10−4 64 1.52×10−3 2.29×10−2

WENO 3.25×10−4 49 1.40×10−2 1.59×10−1

4.3 2D supersonic flow past cylinder
In this test, we consider flow past a cylinder of the radius 0.04 m. The free stream is

argon with ρ∞ = 1.95 × 10−4 kg/m
3

and T∞ = 200 K for the density and the temperature,
respectively. The variable hard sphere (VHS) model is used to calculate the viscosity, which
gives a Knudsen number 0.005 at infinity. We choose such a small Kn to test the stability of
the schemes, since flow can generate a strong bow shock passing the cylinder, which is generally
regarded as discontinuity in continuum flow.

Two different Mach numbers Ma∞ = 6.0 and Ma∞ = 12.0 are considered to illustrate the
capability of the proposed scheme for flow of the large Mach number, where the velocity of
free stream is u∞ =1 580.8 m/s and u∞ =3 161.6 m/s, and the temperature of cylinder wall
is set as Tw = 500 K and Tw =1 000 K, respectively. The thermal accommodation coefficient
is 1.0. The second-order RKDG method with the positivity-preserving limiter is used to solve
the BGK model equation. In the physical space, the unstructured triangular mesh with the
local refinement is used to partition the computation domain, which is restricted to the up-
stream flow. 2 313 triangles and 2 203 triangles are generated for cases of Ma∞ = 6.0 and
Ma∞ = 12.0. The left boundary is hypersonic inlet, the bottom one is symmetrical, while
the top and right ones are hypersonic outlet. In the velocity space, the case of Ma∞ = 6.0
uses discrete velocity points of 35 ranging from –11.07 to 11.07 (non-dimensionalized values)
in each velocity direction, the case of Ma∞ = 12.0 uses discrete velocity points of 65 in each
direction, while the ranges of cx and cy are from –18.86 to 18.86 and the range of cz is from
–21.23 to 21.23. For this problem, there exists a high temperature region near the stagna-
tion point, where the distribution function has a flat shape with a wide spread, and a low
temperature region, where the distribution function has a high peak with a narrow spread.
Therefore, the discrete velocity space has to be accurate enough to recover all the transport
phenomena. According to the CFL condition, the time step is chosen as ∆t = 9.02 × 10−9 s
and ∆t = 6.13 × 10−9 s for Mach numbers 6.0 and 12.0, respectively. The computational
domain is initialized by the free stream condition, and the time convergence criterion is that
the L2 norm of residual reduces by a factor of 104. The obtained results are compared with
the DSMC solutions, which are computed on the same domain with the uniform cell size of
∆x = 2 × 10−4 m and the time step of ∆t = 8 × 10−8 s. About 6 × 106 particles and 60 000
iterations are used, and the macroscopic parameters are sampled over the last 30 000 steps.
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Figures 6 and 7 show the density and temperature contours of DG-2 solutions compared
with the DSMC results. A strong bow shock is yielded. The flow field structures from both the
methods display rather striking similarity. The stagnation line profiles of density, temperature,
and velocity for the case Ma∞ = 12.0 are illustrated in Fig. 8. In general, good agreement
between DG-2 computations and DSMC solutions in the density and velocity can be observed
with the maximum error about 5.9%. The larger deviation appears at the bow shock front in
temperature. It is due to the use of the BGK kinetic model, which cannot give correct viscosity
and conductivity coefficients at the same time. For steady hypersonic flow in the continuum
regime, the DG-2 method consumes much more CPU time than the DSMC method. There are
probably three reasons as follows: (i) The large mean collision frequency results in a small time
step. (ii) The low Kn number leads to a long time from the initial condition to converged flow.
(iii) The standard Cartesian grid brings plenty of velocity nodes. However, we emphasize that
this test is used to illustrate stability of the proposed scheme for flow with strong discontinuity,
which may occur in the high density and velocity regime. Such regime would not be widespread

Fig. 6 DG-2 and DSMC solutions of supersonic flow past cylinder (Ma∞ = 6.0)
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in rarefied gas flow, but is very important in some cases, e.g., the vacuum plume with the near
continuum hypersonic flow around nozzle exit. Therefore, the positivity-preserving limiter is
essential to keep stability in calculation of such cases. In order to reduce the computational
cost, a local refined discrete velocity grid[5] or automatic adaption in the physical mesh[40] and
the time step need be considered, especially for the large density difference occurring in flow.
That is what we will do in our future works.

Fig. 7 DG-2 and DSMC solutions of supersonic flow past cylinder (Ma∞ = 12.0)

4.4 Unsteady shock tube

The third test is a well-known one-dimensional unsteady flow problem, Riemann problem[46],
which treats the development of flow due to initial discontinuity. Removing the diaphragm
separating the gas in the two reservoirs of the zero velocity with potentially different pressures,
densities and temperatures, results in a characteristic wave system consisting of a shock wave,
an expansion fan, and a contact discontinuity. The inviscid shock tube problem can be solved
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exactly using the gas dynamic theory. The test case chosen here was used by Laney[47] to
evaluate and compare a number of different CFD schemes, with the initial density and pressure
ratios of ρL/ρR = 8 and pL/pR = 10. We use argon gas on both the left and right sides of the
tube, and assume an initial pressure of pL =1.013 25×103 Pa and temperature of TL = 273 K
on the left side.

Fig. 8 Stagnation line profiles for Ma∞ = 12.0

At an elapsed time of t = 6.5 × 10−6 s, the results from the seconder-order RKDG method
solving BGK model equations, are compared with the results from the DSMC method. Both
the simulations are carried out on the 2D domain of the size 0.01 m×0.000 05 m with 200 × 1
uniform cells, and the initial discontinuity is located at x = 0.005 m. Particularly, reflecting
boundaries are set on all sides. Each simulation uses a time step interval of ∆t = 1.0× 10−8 s,
which is about 80% of the mean collision time on the left side. For the RKDG calculation, the
discrete velocities of 10 ranging from –3.54 to 3.54 in each velocity direction are used. For the
DSMC simulation, in order to reduce the sample noise, the initial population is about 32 000
particles per cell on the left side and 4 000 particles per cell on the right side. Calculations are
performed on 8 CPUs, the RKDG method takes about 0.067 h, and the DSMC method takes
about 0.1h. Exact Riemann results are also used for comparison. Gas density and temperature
profiles are shown in Fig. 9, with values normalized by the properties on the left side. The
solid lines are the analytical results, dots illustrate the solutions from the proposed scheme, and
the dashed lines with the statistical scatter are the ones from the DSMC method. The RKDG
results agree very well with the results from the particle method, and both agree reasonably well
with the profiles from the exact Riemann solver. The deviations at the bends of the profiles
are mainly due to the gas rarefaction, which has weaken the strength of fluctuations in gas
properties. For the analytical solution, it is assumed that the gas flow follows a Maxwellian
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distribution, and its evolution is ruled by Euler’s equations. However, in rarefied gas, there is
not enough molecular collisions to reach equilibrium. Therefore, the thickness of the shock wave
becomes wider, and the contact discontinuity gradually fades out. The higher the rarefaction
is, the larger the deviation is[48].

Fig. 9 Normalized density and temperature profiles at t = 6.5 × 10−6 s for shock tube problem

5 Conclusions

A stable RKDG scheme which strictly preserves positivity of the solutions, has been designed
to solve the Boltzmann kinetic model equations for hypersonic rarefied gaseous flow. Stability
is kept by accuracy of the velocity discretization, the conservation of the collision terms and
a limiter. For hypersonic flow, the appropriate velocity ranges could become quite wide, and
a large number of discrete velocities are needed to meet the accuracy requirement. Therefore,
the equally-spaced composite Newton-Cotes formulae are more convenient to approximate the
velocity integral with appropriate velocity bounds. For the calculation of collision term, the
equilibrium velocity distribution function is estimated using a discontinuous conservative dis-
cretization method, which enforces a weak conservation of mass, momentum, and energy. Based
on the first-order forward Euler time discretization and a special triangle quadrature rule, the
sufficient conditions which keep positivity of the cell average solutions of the velocity distribu-
tion functions are obtained. These sufficient conditions require that the time step is smaller
than the minimum local collision time, and that the values of velocity distribution functions
on the quadrature points are always non-negative. The later requirement is forced by a linear
limiter. Since the high-order Runge-Kutta time discretization is a convex combination of Euler
forward, the full scheme with the high-order time discretization still satisfies the positivity-
preserving property on the cell average values. Verification of the scheme has been performed
by comparison with the experimental data, DSMC and analytical solutions for a normal shock
wave at the Mach number 2.05, hypersonic flow at the Mach numbers 6.0 and 12.0 passing a
2D cylinder, and an unsteady shock tube flow. Results show that, the scheme is stable and
accurate to capture the shock structures in steady and unsteady hypersonic rarefied gaseous
flow. Compared with the widely used TVB and WENO limiters, the current limiter has the
advantage of easy implementation and the ability of minimizing the influence of accuracy of the
original RKDG method. It would not destroy the accuracy of the evolution of the Boltzmann
model equations, which are valid for the entire range of rarefaction.
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