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The high-order Runge–Kutta Discontinuous Galerkin (RKDG) method is applied to solve the 2D
Boltzmann kinetic equations. A conservative DG type discretization of the non-linear collision relaxation
term is formulated for both the Bhatnagar–Gross–Krook and the ellipsoidal statistical kinetic models.
Verification is carried out for a steady and an unsteady oscillatory 1D Couette flows, a 2D conduction
problem as well as for a 2D long microchannel flow by comparison with the DSMC and analytical solu-
tions. The computational performance of the RKDG method is compared with a widely used second-order
finite volume method. The RKDG method has up to 3rd-order spatial accuracy and up to 4th-order time
accuracy and is more efficient than the finite volume approach. The parallelization by domain decompo-
sition in physical space is implemented and parallel performance is evaluated. It is shown that 2nd order
RKDG is over 15 times faster than the 2nd-order FVM method for the Couette flow test case. The high-
order RKDG method is especially attractive for solution of low-speed and unsteady rarefied flows.
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1. Introduction

The non-equilibrium rarefied gas flows are often encountered in
high-altitude aerodynamics, vacuum technology and micro-elec-
tro-mechanical systems (MEMS). Accurate physical models and
efficient numerical methods for solution of Boltzmann equation
are required for predicting the non-equilibrium flow phenomena
encountered in such rarefied flows. The degree of rarefaction is
characterized by the Knudsen number, the ratio of the mean free
path k to the flow characteristic dimension L [1]. For Knudsen num-
bers much smaller than one, the Navier–Stokes equations are valid
and the continuum computational fluid dynamics (CFD) methods
could be employed for numerical simulations. At Kn > 0.01 the
no-slip boundary condition breaks down. For larger Knudsen num-
bers, the shear stress and heat flux in the hydrodynamic models
cannot be simply expressed in terms of the lower-order macro-
scopic quantities and models of kinetic theory based on the Boltz-
mann equation for the velocity distribution function of molecules
are required.

In gas kinetic theory, the motion of molecules in dilute gas is
mathematically described by the integro-differential Boltzmann
equation which is valid for the entire range of Knudsen number.
However, due to the high dimensionality of the phase space and
the complexity of the nonlinear collision integral term, the full
Boltzmann equation is amenable to analytical solutions only for a
few special cases. The direct simulation Monte Carlo (DSMC)
method is the most widely used numerical method for solution
of the Boltzmann equation [1]. It is a particle-based method which
evaluates the molecular behavior stochastically according to a pre-
scribed binary interaction model. The DSMC method is absolutely
stable and amenable to various high-fidelity physical and chemical
models. Since the early 1960s, it has been successfully applied to a
wide range of problems in rarefied gas dynamics, especially for the
hypersonic flows. However, the major features of the stochastic
method, including the statistical noise, the explicit and low-order
time integration and the strict requirements for resolution of the
mean free path and collision time scales by appropriate cell sizes
and time steps, make it very inefficient in simulating low-speed
flows, unsteady flows and near continuum flows [2–4]. Many
improved particle-based approaches have been proposed to deal
with computational cell size and time step limitations of DSMC,
such as implicit Monte Carlo method [5], equilibrium particle
method [6] and low diffusion particle method [7], and IP-DSMC
method [8]. Recently, the variance reduction methods are devel-
oped to significantly reduce statistical uncertainty of the DSMC
method for the simulations of flows in the small Mach number
limit [9,10], which has been proven to solve the Boltzmann
equations [11]. However, the particle nature of these stochastic
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methods hinders coupling to continuum CFD and deterministic
structural, thermal and electrostatic modeling [12,13].

The deterministic numerical simulation (DNS) approaches
relaying on the discrete ordinate method [14,15] are attractive
alternatives to overcome the DSMC limitation. These methods
adopt a numerical quadrature to approximate the integration with
respect to molecular velocity on a discrete set of velocities. Then,
the distribution functions which are continuous in physical space
and time but discrete in velocity space are solved by CFD methods
involving direct numerical solution procedures for the governing
equations through physical-space discretization. The DNS methods
are free of statistical noise and admit high-order formulations in
phase space as well as implicit time marching. Other advantages
of the deterministic approaches include the simplified application
of subsonic boundary conditions and procedures to couple with
other deterministic solvers for fluid and solid domains. Due to
the multi-dimensionality of the velocity distribution function in
the phase space which spans both spatial and velocity coordinates,
high-order discretization is critically important for direct solvers to
reduce memory and computational time. The high-order finite dif-
ference method (FDM) and finite volume method (FVM) have been
developed for the Boltzmann based equations [16–22].

Recently, another class of high-order numerical method, the
discontinuous Galerkin (DG) finite element method has become
popular. The first DG method was introduced to solve the steady
neutron transport equation in 1973 by Reed and Hill [23]. Then
the so-called Runge–Kutta DG (RKDG) method was well developed
for nonlinear time-dependent equations by Cockburn and Shu [24–
27]. One of the most attractive features of this method is its ability
to naturally obtain fluxes at the boundaries with the same high-
order accuracy as in the interior of the domain [23,28]. This is espe-
cially important for applications of non-equilibrium flow analysis
where stress and heat flux distributions on the solid boundaries
are the main quantities of interest. Comparing to other high-order
methods such as FVM and FDM, it also provides advantages includ-
ing easy formulation on arbitrary meshes, straightforward imple-
mentation of boundary conditions, as well as efficient parallel
computation due to compactness of the scheme [29]. Although this
method is more efficient in discretization than the FDM or FVM
with same order of accuracy [28], the RKDG method is seldom used
to solve the rarefied gaseous flows. Liu and Xu developed a DG sol-
ver for 2D moment equations without collision term on rectangle
meshes [30]. Gobbert solved 2D/2V and 3D3V linear Boltzmann
equation using DG method in transient regime [31]. Baker and
Hadjiconstantinou formulated a DG discretization for Boltzmann
equation and used variance reduction approach to evaluate the
weak form of the collision integral, which resolves the state with
small deviations from the equilibrium. The test problems were per-
formed in zero and one spatial dimensions [32]. Alekseenko pro-
posed a velocity discretization based on DG method for 1D BGK
model kinetic equation [33].

As an extension of our previous work [34], we present a conser-
vative RKDG formulation and parallel solver for 2D/2V and 2D/3V
kinetic equations and study its performance. The strictly conserva-
tive formulation of the collision term is obtained on arbitrary trian-
gular meshes for the first time. By introducing a set of discrete
velocities, the integro-differential equation is replaced by a system
of differential equations, which are discretized in physical space
using a DG method. The obtained ordinary-differential system is
discretized in time by a class of explicit Runge–Kutta method
[35]. A conservative DG type discretization of the non-linear
collision relaxation term is formulated for both the Bhatnagar–
Gross–Krook and the ellipsoidal statistical models. Computational
performance is investigated by comparing with a finite volume
method. The remainder of the paper is organized as follows. In
Section 2 the numerical scheme is described including the velocity
discretization, DG method, time marching, numerical flux and
boundary conditions. The approach for domain decomposition for
the parallel implementation is discussed in Section 3. Four differ-
ent verification problems are presented in Section 4 together with
the analysis of computational performance. Conclusions are sum-
marized in Section 5.

2. Numerical method

2.1. The governing equations

In the kinetic model, the original Boltzmann equation is
reduced to a relatively simpler partial differential equation by
introducing the collision relaxation term. Two frequently used
forms are the Bhatnagar–Gross–Krook (BGK) [36] and the ellipsoi-
dal statistical BGK (ES-BGK) [37] models. The kinetic model equa-
tions are written as

@f
@t
þ c � @f

@r
¼ mðf E � f Þ ð1Þ

where f is the distribution function of molecular velocities, which is
defined so that f(t,r,c)drdc is the number of molecules at time
instant t, with velocity components lying within the limits c and
c + dc, and spatial coordinates lying within the limits r and r + dr.
Here fE denotes a suitable distribution under equilibrium. In the
standard BGK model which corresponds to the gas Prandtl number
Pr = 1, fE is the local Maxwell distribution, while in ES-BGK model fE

is a local anisotropic Gaussian and m is the collision frequency given
as

m ¼ Pr
P
l

ð2Þ

where P is the local gas pressure and l is the viscosity coefficient.
An arbitrary viscosity law could be specified and a frequently-used
power-law l = lref(T/Tref)x is applied here with the reference prop-
erties lref, Tref and x given by Bird [1]. The collision frequency m
involves the Prandtl number Pr, which is a free parameter allowing
the ES-BGK collision model to reproduce both the viscosity and
thermal conductivity corresponding to an arbitrary Prandtl number
[38]. The Prandtl number is equal to 2/3 for monatomic gases, while
the BGK model is a special case of the ES-BGK for Pr = 1. Note that in
general collision frequency models depending on velocity could also
be implemented within kinetic models for high non-equilibrium
flows [20].

For two-dimensional flows, the dimensionality of phase space
could be reduced by integrating the distribution functions over
the velocity space with respect to the component cz with weighting
factors 1 and cz

2

f 1ðt; x; y; cx; cyÞ ¼
Z 1

�1
f ðt; x; y; cÞdcz ð3Þ

f 2ðt; x; y; cx; cyÞ ¼
Z 1

�1
c2

z f ðt; x; y; cÞdcz ð4Þ

The reduced system has only five independent variables, i.e. two
spatial and two velocity components plus the time variable. For
the sake of generality for the three-dimensional simulations, we
still keep a 2V/3V system and denote the full-distribution function
f as f0. For the numerical solution of the system, it is convenient to
non-dimensionalize all variables and functions. Let L, n0 and T0 be
reference dimensional values of the length, number density and
temperature. Then the reference velocity is u0 = (2RT0)1/2, the
reference time is L/u0, the reference pressure is P0 = n0kT0, and the
reference viscosity is n0kT0L/u0, where R is the gas constant and k
is the Boltzmann constant. Finally, if we non-dimensionalize the full
velocity-distribution function f0 by n0/(2RT0)3, the reduced
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distribution function f1 and f2 respectively by n0/(2RT0) and n0, the
non-dimensionalized system is obtained as

@~f p

@~t
þ ~cx

@~f p

@~x
þ ~cy

@~f p

@~y
¼ ~mð~f E � ~f Þ; p ¼ 0;1 or 2 ð5Þ

The non-dimensional macroscopic gas flow parameters are obtained
by integrating the distribution functions over the velocity phase:

~n ¼
Z 1

�1

~f 0;1d~c ð6Þ

~u ¼ 1
~n

Z 1

�1
~c~f 0;1 d~c ð7Þ

eT ¼ 2
3~n

Z 1

�1
ð~c � ~uÞ2~f 0d~c; eT ¼ 2

3~n

Z 1

�1
½ð~c � ~uÞ2~f 1 þ ~f 2�d~c ð8Þ

In the remainder of the paper, we will omit the tilde symbols denot-
ing non-dimensional variables.

2.2. Discrete velocity model

The velocity space discretization is implemented using both
Cartesian and spherical meshes [39]. The Cartesian type consists
of discretization of the velocity component cx with total N1 uniform
velocity abscissas cx(j1) = cx,min + (j1 � 1)Dcx + 1/2Dcx, j1 = 1, . . .,N1,
where Dcx = (cx,max � cx,min)/N1. The components cy and cz are dis-
cretized in a similar way. The limiting values cmax and cmin must
be chosen carefully to ensure that the effects of the tails of the dis-
tribution function are negligible. The spherical mesh involves high
order discretization in the velocity magnitude and has no bound
limitation. We apply here Gaussian–Laguerre quadrature up to
16th order in velocity magnitude and both 3/8th Simpson rule
and uniform abscissas in velocity angles. The velocity nodes are
stored in an array, where cj(cx

j 1, cy
j 2, cz

j 3) is the jth element of the
array. If we denote fp

j (t,x,y) = fp(t,x,y,cj), the governing equation is
then transformed into the system of N = N1 � N2 � N3 or
N = 2 � N1 � N2 equations

@f j
p

@t
þ cj

x

@f j
p

@x
þ cj

y

@f j
p

@y
¼ mðf j

E � f j
pÞ; p ¼ 0;1 or 2 ð9Þ

The macroscopic parameters such as number density n, velocity u
and temperature T are evaluated through numerical quadratures
as follows:

n ¼ hf j
0;1id ð10Þ

u ¼ 1
n
hcf j

0;1id ð11Þ

T ¼ 2
3n
hðc � uÞ2f j

0id; T ¼ 2
3n
hðc � uÞ2f j

1 þ f j
2id ð12Þ

where the operator h�id denotes the integration over the velocity
space with the chosen numerical quadrature rule.

2.3. Discontinuous Galerkin formulation and time discretizations

We use the discontinuous Galerkin method to discretize the
system in physical phase. The 2D computational domain XS is par-
titioned into M triangular elements Ki (i is the index of the triangle
elements) to handle arbitrary geometries. Then approximate
solutions of fp

j are sought in the finite element space of piecewise
polynomials within each triangle Ki

f j
pðt; x; yÞ ¼

Xk

l¼1

Fj;l
p;iðtÞu

l
iðx; yÞ ð13Þ

where ui
l(x,y) is the basis function supported in Ki and k is the total

number of the basis functions, while F j,l
p,i(t) is the respective degree
of freedom. In this work, we present the piecewise linear and piece-
wise quadratic approximations with 2nd-order and 3rd-order spa-
tial accuracy, respectively. For the 2nd-order case, the three basis
functions are linear polynomials which yield the value 1 at one of
the midpoints of the edges of Ki and the value 0 at the midpoints
of the other two edges. For the 3rd-order case, the six basis func-
tions are quadratic polynomials which yield the value 1 at one of
the six points (the three midpoints of edges and three vertices) in
Ki and the value 0 at the remaining five points [27].

In order to determine the degrees of freedom, standard
techniques of finite element formulations are applied to obtain
the weak formulations of the governing system, which is expressed
as

Xk

l¼1

Mml
d
dt

Fj;l
p;iðtÞ þ

X
e2@Ki

Z
e

he;Ki
ðt; x; yÞum

i ðx; yÞdC

� cj
x

Xk

l¼1

Fj;l
p;iðtÞQ

x
ml � cj

y

Xk

l¼1

Fj;l
p;iðtÞQ

y
ml

¼
Z

Ki

m f i;j
E;p �

Xk

l¼1

Fj;l
p;iðtÞu

l
iðx; yÞ

 !
um

i ðx; yÞdxdy; m ¼ 1; . . . k ð14Þ

where he,Ki(t,x,y) is the numerical flux at the edge e of the triangle
Ki, with matrices Mml and Qml are defined as

Mml ¼
Z

Ki

um
i ðx; yÞul

iðx; yÞdxdy ð15Þ

Qx
ml ¼

Z
Ki

ul
iðx; yÞ

@

@x
um

i ðx; yÞdxdy;

Qy
ml ¼

Z
Ki

ul
iðx; yÞ

@

@y
um

i ðx; yÞdxdy ð16Þ

Finally, the resulting system of ordinary differential equations
(ODEs) is required to be discretized in time with a method that
is at least 2nd and 3rd-order accurate for 2nd and 3rd-order DG
schemes, respectively [27]. This is done by a special class of explicit
total variation diminishing (TVD) Runge–Kutta methods [35]. As
any explicit method, the RKDG scheme has stability restrictions
required by the CFL condition:

jcjjmax
Dt
h
6 Const ð17Þ

where h is the element size and Const is a constant depends on the
order of spatial and time discretized schemes. In one spatial dimen-
sion, the p-th order DG space discretization combined with a p-th
order RK time marching was proven to be stable with Const = 1/
[2(p � 1) + 1] [40]. However, for the cases with higher dimension,
the CFL condition is highly dependent on the pattern of the spatial
element and cannot be summarized in a simple inequality [29,41].
In this work, h is set as the minimum triangle height and Const is set
as 0.3 for 2nd-order scheme and 0.2 for 3rd-order one. This is a safe
estimation. Finally, the integrals that appear in the above system
are numerically estimated using quadrature rules [42].

2.4. Numerical flux and boundary conditions

At the edge e of the triangles, the discontinuity of the values of
fp
j allows the use of the numerical fluxes, which are based on exact

or approximate Riemann solvers, to replace the real ones.
Two-point first order monotonic fluxes are widely used due to
their simplicity [43]. At any point re which belongs to the edge e,
these numerical fluxes he,Ki(t,re,) are dependent on both the
approximate solutions obtained from the interior of the element
Ki, i.e. fp

j (t, re,int(Ki)), and the ones obtained from the exterior of
the element, i.e. fp

j (t, re,ext(Ki)) [27]. Here the simple upwind flux is
used:
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he;Ki
ðt; reÞ ¼

cj � ne;Ki
f j

p t; re;intðKiÞ
� �

; cj � ne;Ki
P 0

cj � ne;Ki
f j

p t; re;extðKiÞ
� �

; cj � ne;Ki
< 0

8<: ð18Þ

where ne,Ki is the outward unit normal to the edge e.
The boundary values fp

j (t, re,ext(Ki)) should be specified at the
boundary edges. Five different types of boundary conditions are
described below, namely, the symmetry boundary, specular-dif-
fuse moving wall with given accommodation coefficient, periodic
boundaries, far-pressure inlet/outlet boundaries, and supersonic
inlet/outlet boundaries.

2.4.1. Symmetry boundary
For each incident discrete velocity cj, the reflected velocity cjr is

found as

cjr ¼ cj � 2ðcj � ne;Ki
Þne;Ki

ð19Þ

The index jr associated with the reflected velocity is sought from
the minimum of the product [(cjr � cj)�(cjr � cj)] over all cj. Finally,
the boundary values are calculated as

f j
pðt; re;extðKiÞÞ ¼ f jr

p ðt; re;intðKiÞÞ ð20Þ
2.4.2. Wall boundary
A widely used Maxwell specular-diffuse wall model is imple-

mented as follows. Given a wall at temperature Tw, velocity uw

and a specified gas–solid accommodation coefficient a, the
boundary values are computed as

f j
pðt; re;extðKiÞÞ ¼ af j

p;w þ ð1� aÞf j
p;symmetry ð21Þ

where fp
j

,symmetry is the symmetric value given as Eq. (20), and fp
j

,w

are the Maxwellian distribution functions at the wall conditions

f j
0;w ¼

nw

ðpTwÞ3=2 exp � 1
Tw
ðcj � uwÞ

2
� �

ð22Þ

The wall number density nw is calculated from the conservation of
mass:X
ðcj�uwÞ�ne;Ki

P0

ðcj � uwÞ � ne;Ki
f j

0ðt; re;intðKiÞÞ

þ
X

ðcj�uwÞ�ne;Ki
<0

ðcj � uwÞ � ne;Ki
f j

0;w ¼ 0 ð23Þ
2.4.3. Periodic/periodic shadow boundary
The boundary values at the periodic/periodic shadow edge are

equal to the approximate solutions evaluated at the relative edge
in the periodic edge pair

f j
p t; re;extðKiÞ
� �

¼ f j
p t; rep;intðKpÞ
� �

ð24Þ

where rep and Kp are the relative point and triangle associated with
the point re and triangle Ki respectively through the periodic
connection.

2.4.4. Far-pressure inlet/outlet boundary
The boundary values for velocity directions incoming to the

domain are set to equilibrium values at given density n0, tempera-
ture T0 and zero velocity:

f j
0ðt; re;extðKiÞ; tÞ ¼

n0

ðpT0Þ3=2 exp � 1
T0

cj2
� �

ð25Þ
2.4.5. Supersonic inlet/outlet boundary
If the flow is in the supersonic regime, the one-dimensional

characteristic theory indicates that there will be three incoming
characteristic lines along which information propagates at the inlet
and no incoming characteristic line at the outlet. Therefore, density
n0, temperature T0 and velocity u0 should be freely specified at the
inlet and the boundary values of the velocity distribution functions
are given as Maxwellian

f j
0 t; re;extðKiÞ; t
� �

¼ n0

ðpT0Þ3=2 exp � 1
T0
ðcj � u0Þ

2
� �

ð26Þ

The boundary values at the outlet are obtained from the interior:

f j
pðt; re;extðKiÞÞ ¼ f j

pðt; re;intðKiÞÞ ð27Þ

Note that non-Maxwellian distribution functions could also be used
corresponding to the Navier–Stokes solution with stresses and heat
flux computed by the CFD solver for coupled continuum-rarefied
calculations.

2.5. Conservative discretization of the collision term

In order to complete the discontinuous Galerkin formulation of
the kinetic model equations, we need to specify the discrete equi-
librium distribution functions fE,p

i,j at each intermediate step of the
Runge–Kutta process such that the mass, momentum and energy
conservations are enforced in the collision relaxation term. The
preservation of these collision invariants is essential for accurate
numerical solution [44]. The collision term has the form

Ri;j
m;p ¼

Z
Ki

m f i;j
E;p �

Xk

l¼1

Fj;l
p;iðtÞu

l
iðx; yÞ

 !
um

i ðx; yÞdxdy ð28Þ

The local equilibrium distribution functions are defined in each tri-
angle element. The function for the BGK type equilibrium equation
is chosen in the form

f i;j
E;0 ¼ exp½a1 � a2ðcj � uÞ2 þ a3ðcj

x � uÞ þ a4ðcj
y � vÞ� ð29Þ

where u(u,v) is the macroscopic flow velocity. The conservation is
achieved by specifying the condition that the equilibrium functions
satisfy the discretized version of the following conservation equa-
tions:

R
Sdc = 0,

R
cxSdc = 0,

R
cySdc = 0 and

R
(c � u)2Sdc = 0, where

S = m(fE,p � fp) is the collision term. The discrete set of the conserva-
tion equations for the full equilibrium distribution is shown below

hf i;j
E;0id � n ¼ 0 ð30Þ

hcjf i;j
E;0id � nu ¼ 0 ð31Þ

hcj2f i;j
E;0id � n u2 þ 3

2
T

� �
¼ 0 ð32Þ

Similarly, the ES-BGK type equilibrium equation is of the form

f i;j
E;0 ¼ exp a1 � a2ðcj

x � uÞ2 þ a3ðcj
x � uÞ � a4ðcj

y � vÞ2
h

þa5ðcj
y � vÞ þ a6cj

xcj
y � a7cj2

z

i
ð33Þ

Besides the conservation of mass and x, y-momentum, the following
energy conservation equations are also included

hcj2
y f i;j

E;0id � nðv2 þ TyyÞ ¼ 0 ð34Þ

hcj2
x f i;j

E;0id � nðu2 þ TxxÞ ¼ 0 ð35Þ

hcj2
z f i;j

E;0id � nTzz ¼ 0 ð36Þ

hcj
xcj

yf i;j
E;0id � nðuv þ TxyÞ ¼ 0 ð37Þ

where the normal components are Txx = h(cx
j � u)2[(1 � 1/Pr) fE

j
,0 + 1/

PrfE
j
,0,BGK]id/n and the cross-terms are Txy = h(cx

j � u)(cy
j � v)[(1 � 1/

Pr)fE
j
,0 + 1/Prf E

j
,0,BGK]id/n. Pr is the Prandtl number and f E

j
,0,BGK the

BGK equilibrium distribution function.



Table 1
Notations of the numerical methods used in this work.

Notation Numerical method

FVM-2 FVM with 2nd order minmod flux combined with 2nd order TVD
Runge–Kutta time scheme

RKDG-2 2nd order DG method combined with 2nd order TVD Runge–Kutta
time scheme

RKDG-3 3rd order DG method combined with 3rd order TVD Runge–Kutta
time scheme
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In order to be consistent with the weak formulation of the DG
method and to retain high order accuracy, the unknown coeffi-
cients as are sought in each triangle element with the form

asðx; yÞ ¼
Xk

l¼1

Al
su

l
iðx; yÞ ð38Þ

The principal difference between this form of collisional relaxation
term and the one used in the FVM method [39] is that the collision
frequency and other macroscale properties can vary inside the
spatial elements. Note that this relaxes the requirement on the cell
size to be smaller than the mean free path of molecules. Now the 4k
or 7k unknown coefficients As

l can be found from the weak
formulations of the conservations in collision relaxation term,
formedZ

Ki

mðx; yÞCum
i ðx; yÞdxdy ¼ 0; m ¼ 1; . . . ; k ð39Þ

where C is the left-hand side of equations. This yields a system of 4k
or 7k non-linear equations in each triangle element, which are solved
iteratively using the Newton’s method. A tolerance limit of 10�10 and
a maximal iteration of 100 have been used. The Jacobian matrices of
the systems are inversed by the Gaussian with scaled column
pivoting algorithm. In this way, the discrete collision term does not
give rise to any source or sink of mass, momentum or energy.

3. Spatial discretization and parallel implementation

In the present approach, the discrete velocity method is
employed to discretize the velocity space and to cast the governing
equation into a system of equations for the discrete velocity distri-
butions. Then, the physical space is split up into a set of triangles
and the finite element method is developed to solve the distribu-
tions at each velocity points. Within the triangle elements, the
velocity distribution functions are sought in the finite element
space of piecewise functions. Therefore, the complexity of the cur-
rent computational problem is proportional to the number of
velocity nodes N, the number of spatial elements M, and to the
order of basis functions k. Due to the multi-dimensionality of the
problem, parallel computations are highly desirable.

The parallel domain decomposition may be applied for the dis-
crete velocity space XV, for the physical space XS, or both. In order
to obtain high parallel efficiency and speed-up, the communication
time and data passing among processors should be reduced. It can
be indicated from the computational algorithm that, after the ini-
tial procedures, the time evolution of the velocity distribution
functions involves two major parts: (1) computation of flux and
(2) evaluation of the collision term. The flux computation is only
over the physical space and the computational stencil involves
only the nearest-neighbor communication, independent of the
order. In the collision term calculation, the summations over the
whole velocity space are required. Therefore, the present RKDG
method is well suited for decomposition in physical space XS for
efficient parallelization. At the initialization step, the domain XS

is partitioned into several sub-domains with nearly equal number
of triangles with each processor allocated one sub-domain. Trian-
gular element pairs at the sub-domain boundaries will share edges,
and the processors on which they reside communicate with each
other at every intermediate time step to pass information on fluxes
across their shared element edges.

4. Results and discussion

For verification we consider one unsteady and three steady-
state flow problems. The steady-state is obtained by iterating in
time until the convergence is reached. The time convergence
criterion is that the global relative residual of the velocity distribu-
tion functions between successive iterations decreases by a factor
of 105 or 106. The residual is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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where fj
new are the distributions obtained at the current time step

and fj
old are the ones obtained at the previous time step. The RKDG

solvers of second and third order are applied to solve the Boltz-
mann-BGK and ES-BGK equations for planar Couette flow, 2D con-
duction problem and long microchannel flow. The results are
compared with the analytical results, DSMC solutions and solutions
from a second-order finite volume solver [45], which is widely used
currently. For convenience, the notations of the numerical method
are illustrated in Table 1. These entire tests were done in double
precision on a queue of the CARTER parallel cluster in Purdue Uni-
versity. Specially, the queue has 4 nodes with two 8-Core Intel
Xeon-E5 processors and 32 GB RAM per nodes.

4.1. Steady Couette flow

The first test case considered is the planar Couette flow. Specif-
ically, this case is used to verify the implementation of the periodic
boundary condition and the wall boundary condition with a vari-
able accommodation coefficient a. Both the RKDG and FVM meth-
ods were used to solve the 2D/3V BGK and ES-BGK models. The
parameters used are the same as in the work by Mieussens [20]
with argon gas between two plates H = 1 m apart maintained at a
temperature of Tw = T0 = 273 K. The bottom wall is at rest while
the top one is moving with a velocity uw = 300 m/s. Initially the
gas has a density q0 = 9.28 � 10�6 kg/m3, corresponding to the
Knudsen number from the variable hard sphere models as
0.00925. For the cases Kn = 0.0925 and Kn = 0.925, all the
conditions are same except that the gas density are now
q0 = 9.28 � 10�7 kg/m3 and q0 = 9.28 � 10�8 kg/m3, respectively.

The problem was simulated on two-dimensional spatial mesh
shown in Fig. 1. The triangular mesh used in RKDG simulations
and the rectangle type mesh in FVM. The top and bottom bound-
aries are solid walls with given accommodation coefficients. The
west and east boundaries were, respectively, the periodic condition
in RKDG simulations and the zero-gradient condition in FVM cases.
For such a one-dimensional flow, the two boundary conditions are
equivalent. In both methods, the residual for the convergence cri-
terion used was evaluated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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The values of the distribution functions in spatial element i were
calculated as the cell average value of f in RKDG method. All the



Fig. 1. Schematics of the two-dimensional spatial meshes. Top: triangle mesh used
in RKDG simulation; bottom: rectangle mesh used in FVM simulation.
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cases were run on a single processor. The DSMC results are used as a
reference, which were obtained by Bird’s 1D code [1]. The VHS
model was applied in DSMC calculation. Therefore the exponent
of the viscosity law in kinetic models used in DG and FVM solvers
was set as 0.81 for Argon. By choosing the same viscosity, the
Fig. 2. Calculated bulk velocities for BGK solutions of Couette flow with different numer
solutions with Kn = 0.00925, a = 1.0; (c) BGK FVM-2 solutions with Kn = 0.00925, a = 1.0;
elements along y direction.
comparisons were expected to make sense. However, due to the
intrinsic difference of the collision implementations between the
stochastic and deterministic methods, the error measurements
may inevitably contain modeling error.

First of all, to show the convergences of the different methods,
the Kn = 0.00925 case with accommodation coefficient a = 1.0 was
run on spatial meshes with different number of elements. The
Cartesian velocity grid of 10 � 10 � 10 discrete velocities with
bounds [�4 � (Tw/2)1/2, uw + 4 � (Tw/2)1/2] in cx direction and
[�4 � (Tw/2)1/2, 4 � (Tw/2)1/2] in the other two directions was used.
With this velocity grid, a further increase of the number of grid
points improves the results by a magnitude no more than 0.05%.
Solutions of different methods for the BGK model are plotted in
Fig. 2a–c. The calculated bulk velocities are extracted along a ver-
tical plane at the center of the computational domain and are com-
pared with the DSMC result. Ny in the figures denotes the number
of spatial elements along y direction. It is shown that as the num-
bers of elements increase, all the solutions converge to the DSMC
result within a few percent. The FVM-2 results for bulk velocity
converge to DSMC solution for Ny = 128 and larger, while the
RKDG-2 results are converging for Ny = 8 and larger. The conver-
gent results of the calculated temperature for different models
are plotted in Fig. 3. The ES-BGK model obtains a correct result
due to the fact that it gives a correct Pr number.
ical method: (a) BGK RKDG-2 solutions with Kn = 0.00925, a = 1.0; (b) BGK RKDG-3
(d) BGK RKDG-2 solutions with variable Kn and a. Ny denotes the number of spatial



Fig. 3. Calculated temperature for two models with Kn = 0.00925, a = 1.0.
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For comparison of the computational efficiency of the methods,
the time step, the number of iterations and total CPU times for the
different methods are listed in Table 2. The time intervals for direct
solvers are dependent on the cell sizes. The CFL numbers of about
0.3, 0.25 and 0.6 were applied to RKDG-2, RKDG-3 and FVM-2
respectively. It is shown that the RKDG method in general is much
more CPU intensive than the second-order finite volume method
with equivalent spatial elements. The most computationally inten-
sive part of the RKDG solution of the kinetic models is the calcula-
tion of the equilibrium distribution functions in collision relaxation
term due to the fact that the non-linear system of equations has to
be solved iteratively. For the same reason, the solutions of the ES-
BGK model take approximately thrice the CPU time of BGK solu-
tions under the same conditions. Non-conservative schemes that
retain the order of accuracy of space and time discretization can
be constructed, and they are much faster but should be used with
caution [34].

The comparison of the relative L1 and L2 errors of the RKDG and
FVM solutions evaluated based on the DSMC result demonstrates
that the RKDG-2 solution with Ny = 8 is at least as good as FVM-2
solution with Ny = 128. The CPU time required to obtain RKDG-2
solution with Ny = 8 is about 15 times smaller than that of the
FVM-2 solution with Ny = 128. The required memory is about 5
Table 2
Computational parameters of different methods and models for Couette flow.

Solution Mesh Dt (s) # of iteration

BGK RKDG-2 4 � 2 5 � 10�5 1257
4 � 4 3 � 10�5 14,502
4 � 8 2 � 10�5 17,722
4 � 16 1 � 10�5 35,247
4 � 32 8 � 10�6 50,459

ES-BGK RKDG-2 4 � 2 5 � 10�5 1,263
4 � 4 4 � 10�5 14,730
4 � 8 2 � 10�5 17,908
4 � 16 1 � 10�5 35,639
4 � 32 8 � 10�6 44,646

BGK RKDG-3 4 � 2 3 � 10�5 15,877
4 � 4 2 � 10�5 17,755
4 � 8 1 � 10�5 35,291
4 � 16 8 � 10�6 44,167

BGK FVM-2 4 � 16 2 � 10�5 9,925
4 � 32 1 � 10�5 28,233
4 � 64 8 � 10�6 41,096
4 � 128 4 � 10�6 86,500
4 � 256 2 � 10�6 175,721
times smaller. In general, based on this comparison one can con-
clude that the second-order Runge–Kutta discontinuous Galerkin
solution for BGK model requires significantly less memory and
CPU time than a second-order finite-volume method with the same
accuracy. In addition, the RKDG-3 solution with Ny = 4 has the
same accuracy as the FVM-2 solution with Ny = 128, which indi-
cates that the RKDG-3 method is even more efficient in the discret-
ization of physical space. However, the CPU time required in
RKDG-3 scheme is about 3 times larger than that of RKDG-2 due
to the fact that smaller time steps are required for the stability of
the higher order RKDG method. Another probable reason is that,
the flux scheme used in the present algorithm has only first-order
accuracy with oscillatory convergence and thus requires a large
number of iterations. High-order flux schemes to be investigated
in the future offer an opportunity for further acceleration of the
RDKG method for Boltzmann kinetic equations.

Finally, the Couette flow simulations are applied to verify the
wall boundary condition with a given accommodation coefficient
and to investigate the ability of the RKDG solver to reproduce rar-
efied flows in different flow regions. The RKDG-2 was used to solve
the BGK model for flows with variable Knudsen number Kn and
accommodation coefficients a. More velocity nodes are required
to get convergent results for high-Knudsen number flows. Carte-
sian velocity grid of 14 � 14 � 14 and 16 � 16 � 16 were applied
to the flows of Kn = 0.0925 and Kn = 0.925 respectively. The calcu-
lated bulk velocities are compared with the DSMC results in Fig. 2d.
Very good agreements are shown and the relative L2 norm errors of
the cases are within 1.5%.
4.2. Oscillatory Couette flow

In the second case, in order to test the RKDG method for captur-
ing the unsteady solutions, an oscillatory Couette flow was calcu-
lated by solving the 2D/2V BGK kinetic model equations. Unlike
the steady Couette flow, the top wall moves with a harmonic veloc-
ity u = u0sin(xt), where u0 is the velocity amplitude and x is the
oscillation frequency. In addition to the Knudsen number, this kind
of flow is characterized by an additional dimensionless parameters,
characterizing oscillation frequency: the ratio of oscillation fre-
quency and collision frequencies h = x/m [46]. In this case, the
argon gas lays between two plates with initial parameters:
q0 = 1.256 � 10�3 kg/m3, T0 = 300 K. The moving wall has a
temperature of Tw = 300 K, velocity amplitude of u0 = 10 m/s and
s CPU time (h) RL1 error (%) RL2 error (%)

0.02 12.14 7.20
0.44 2.51 1.92
1.12 0.72 0.41
4.16 0.50 0.23
9.46 0.49 0.22

0.07 12.34 7.20
1.36 2.47 1.90
3.43 0.70 0.42

12.99 0.42 0.19
32.96 0.33 0.15

2.62 3.06 1.87
4.55 0.65 0.37

20.87 0.50 0.25
45.36 0.49 0.22

0.27 13.74 7.93
1.49 7.66 3.66
4.36 2.96 1.22

18.12 1.04 0.38
71.62 0.82 0.45



Fig. 4. The velocity profiles of the oscillatory Couette flow during a period.

Fig. 5. Sketch of the two dimensional conduction problems.
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a frequency of x = 3.535 � 105. The HS model was employed to
calculate the viscosity. This gives a Knudsen number of 0.09 and
a frequency ratio of 0.1.

The problem was also simulated on two-dimensional spatial
mesh with uniform triangles. The boundary conditions were the
same as the ones in the steady case. Through a convergence study,
8 � 46 discrete velocities with an 8th-order Guass–Laguerre quad-
rature in magnitude and 3/8th Simpson integral in angle were
adopted. Initially, the gas was at rest and reached the periodic
steady state after 4 periods. The velocity profiles during a period
are plotted in Fig. 4 by compared with analytical solutions. The
numerical results were obtained from RKDG-2 scheme on spatial
mesh with Ny = 64 triangles and a time interval of Dt = 0.0017 (in
dimensionless form). The analytical solutions are from Navier–
Stokes equation with the second-order slip velocity boundary con-
dition [47]. The RKDG results agree very well with the analytical
solutions confirming time-accurate discretization. Only a small
discrepancy appears near the moving wall. The error is mainly
due to the fact that the second-order slip boundary could not cap-
ture the highly non-equilibrium kinetic layer at this Knudsen num-
ber. The same difference is also observed between the DSMC and
analytical solutions in Ref. [47].

RKDG-3 scheme was also employed to obtain solution of this
flow. It has been shown that both implementations are time-
accurate and converge to periodic solution at the same time inter-
val. The main difference is that RKDG-3 scheme uses less spatial
elements due to its higher order discretization in space.
4.3. Two-dimensional conduction problem

The two-dimensional verification is carried out by comparison
to the analytical solution of a steady heat conduction problem in
a square cavity. The three boundaries are maintained at
T1 = 273.15 K, while the forth side is at T2 = 327.78 K, as shown in
Fig. 5. The Argon gas is initialed with temperature T0 = 273.15 K
and density q0 = 4.77 � 10�4 kg/m3, corresponding to a Knudsen
number from VHS model of 0.0018. This case is specially used to
verify the symmetrical boundary condition. The obtained solutions
of the 2D/2V BGK model are compared with the analytical distribu-
tion, which is the solution of the general heat equation under the
assumption of two-dimensional steady state [48] given as

hðx; yÞ ¼ 2
p
X1
n¼1

ð�1Þnþ1 þ 1
n

sinðnpx=LÞ sinhðnpy=LÞ
sinhðnpW=LÞ ð42Þ

where h is the normalized temperature defined as h = (T � T1)/
(T2 � T1). L and W are respectively the length and width of the plate,
which are both set as 0.1 m in this test. For computationality, a
truncation of n = 100 is used. The solutions were sought on the half
domain of 0.05 � 0.1 m with six consecutively refined spatial
meshes. The symmetric boundary was used on the vertical plane
crossing x = 0.05 m. The spherical velocity discretization of an 8th
order Gauss–Laguerre quadrature in velocity magnitude and con-
stant integral in angels was used with totally 8 � 12 nodes. The
cases were run on parallel processors and the converged results
were reached when the residual of distribution functions was less
than the factor of 5 � 10�5. The calculated temperatures on differ-
ent special meshes are plotted in Figs. 6 and 7, while the time inter-
vals Dt, number of iterations, number of processors, cumulative
CPU time and relative L2 errors are listed in Table 3. The relative
L2 errors are obtained through the analytical results.

The first three meshes are structured triangle meshes with ele-
ment numbers from 4 to 64. As the number of elements increases,
both the RKDG-2 and RKDG-3 solutions approach to analytical con-
sistent with the order of accuracy of the methods. As expected, the
RKDG-2 solutions are piecewise linear, while the RKDG-3 solutions
are piecewise quadratic. Therefore, the results of RKDG-3 are much
better than that of RKDG-2 with same spatial mesh. Further obser-
vations of the solutions on 16 cells, i.e. Fig. 6c and d, show that the
simulated temperature contours on the bottom half of the plate are
very close to the analytical results and the large error mainly
comes from the region with high gradients. This indicates that
using more cells in the large-gradient region may provide faster
convergence. Therefore, 6 more cells were artificially put on the
top of the plate as shown in Fig. 7a and b. Compared the results
of 16 elements and 22 elements, about 1.5 times more accurate
solutions were reached with only 6 additional cells. This points
to an automatic mesh-adaptation algorithm which can refine the
spatial mesh according to the local gradients, based on the natural
discontinuities in cell edge values.

Another way to improve the solutions with relatively small cost
is adopting non-uniform unstructured mesh with more triangles in
large gradient areas. As illustrated in the last four figures from
Fig. 7c–f, the coarse mesh has 68 triangles and the refined one
has 312 elements in total. We can see that the RKDG-2 solution
on 68 unstructured triangles is about 1.4 times more accurate than
the one on 64 uniform triangles. Besides, the unstructured mesh
can easy handle complex geometries. The solutions converged with
an error of about 0.14%, which mainly comes from the fact that the
continuum heat conduction equation is only a limit equation of the
ES-BGK model when Kn tends to 0. The converged RKDG-2 solution
was obtained on mesh with 312 triangles and cost 9.04 h cumula-
tive CPU time (actual CPU time multiplied by the number of pro-
cessors), while the same accuracy solution of RKDG-3 method



Fig. 6. Temperature distributions of the 2D conduction problem on structured spatial mesh: (a) RKDG-2 solution on 4 elements; (b) RKDG-3 solution on 4 elements; (c)
RKDG-2 solution on 16 elements; (d) RKDG-3 solution on 16 elements; (e) RKDG-2 solution on 64 elements; (f) RKDG-3 solution on 64 elements.
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was obtained on mesh with 22 triangles which cost 6.32 h cumu-
lative CPU time. The CPU memories required for the two solutions
are about 7.9 MB and 0.8 MB respectively. The RKDG-3 method is
faster here due to the fact that the non-uniform unstructured mesh
was used in the physical space. As we know, in regions with large
gradients, a highly refined mesh is usually required in order to
obtain accurate solutions, while in smooth areas, a coarse mesh
should suffice. Compared to DG2, DG3 implements a more efficient
discretization but results in a larger number of degrees of freedom,
which has an uncertain (positive or negative) contribution to com-
putation time depending upon the mesh types. In the Couette flow
case with uniform structured meshes, the DG3, although having
adopted smaller grid cells, was more computationally expensive
than the DG2. While in the conduction case utilizing unstructured
meshes, much less cells were needed in DG3 and its advantages are
realized.



Fig. 7. Temperature distributions of the 2D conduction problem on unstructured spatial mesh: (a) RKDG-2 solution on 22 elements; (b) RKDG-3 solution on 22 elements; (c)
RKDG-2 solution on 68 elements; (d) RKDG-3 solution on 68 elements; (e) RKDG-2 solution on 312 elements; (f) RKDG-3 solution on 312 elements.
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The RKDG method has a different cell size requirement from
that of DSMC method. This is mainly due to their intrinsic differ-
ences in the approach to solving the Boltzmann equation. In DSMC
method, the two-step process of particle moving and colliding con-
sists of simulating advection and collision terms in Boltzmann
equation, which is directly discretized by deterministic solvers.
The different ways of molecular collision model implementation
have direct influence on the resultant transport, e.g. viscosity and
thermal conductivity. In the DSMC method, the contribution of
particle collision to these transport processes is affected by the cell
size and significant errors occur when cell dimensions are larger
than mean free path [49]. On the other hand, the deterministic
solvers based on the ES-BGK model kinetic equations resolve the
transport coefficients by setting the collision frequency as Eq. (2).
In this way, the expression of the transport coefficients would be
the same as given in the full collision integral, when Chapman–
Enskog method is employed to solve the model equations [50].
Hence, the viscosity and thermal conductivity correlate with the
pressure and temperature obtained by discrete distribution func-
tions which are represented by polynomials. Therefore, similar cri-
terion as in a RKDG solver for macroscopic equations such as Euler
or Navier–Stokes is used to determine grid refinement.



Table 3
Computational parameters of different solutions on variable meshes for 2D conduction problem.

Solution Element number Dt (s) # of iterations # of processors Cumulative CPU time (h) RL2 error (%)

RKDG-2 4 1 � 10�6 21,559 1 0.03 1.64
16 1 � 10�6 25,746 2 0.18 0.79
22 7 � 10�7 37,394 2 0.36 0.49
64 7 � 10�7 39,100 4 0.84 0.38
68 7 � 10�7 38,852 4 1.00 0.27

312 4 � 10�7 68,691 8 9.04 0.14

RKDG-3 4 7 � 10�7 38,988 1 0.59 0.41
16 7 � 10�7 39,626 2 2.54 0.22
22 5 � 10�7 55,064 2 6.32 0.14
64 5 � 10�7 55,107 4 15.36 0.14
68 5 � 10�7 55,076 4 21.36 0.13

312 2 � 10�7 13,7689 8 194.80 0.13

Fig. 8. Schematics of the computation domain, boundary conditions and spatial meshes for microchannel flow: (a) computation domain and boundary conditions; (b) spatial
meshes in channel.

Fig. 9. Pressure profile for long microchannel flow, Kn = 0.05, L/H = 30. Dash line is
the analytical solution, solid line is the RKDG-3 result.

Fig. 10. x-component velocity contours for long microchannel flow, Kn = 0.05, L/
H = 30. Read dash line is the analytical solution, color solid line is the RKDG-3 result.
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4.4. Long microchannel flow

The last test is a benchmark problem of long microchannel flow
at a low Knudsen number. To validate the implementation of the
far-pressure inlet/outlet boundary conditions, the nitrogen flow
in a straight channel with aspect ratio L/H of 30 was calculated
based on the ES-BGK model and compared with the analytic
approximate solution from 2D Navier–Stokes equations with
first-order slip-velocity boundary conditions [51]. The height of
the channel was set as 0.2 mm and Knudsen number based on
the outlet condition and with respect to the channel height is
0.05. The pressure ratio between the inlet and outlet is 2.47. The
inlet temperature of the gas is 300 K which corresponds to a value
of the viscosity coefficient of 1.776 � 10�5 kg/m s based on the VHS
model with a viscosity-temperature exponent of 0.74. Initial den-
sity and temperature of the gas are 6.15 � 10�3 kg/m3 and 300 K
respectively.

The governing equation, i.e. Eq. (1), for the present system is
accurate for monatomic gas. If the gas is not simply a monatomic
gas but has internal structure, the equation must be modified
and the problem will become rather difficult. One simplistic
approximation is to assume that all internal molecular energy
modes are in equilibrium, which is suitable when the condition



Fig. 11. Speed up and efficiency for the RKDG solver: (a) speed-up ratio; (b) efficiency.
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deviate a bit from the equilibrium. Therefore, we just modified the
Pr as 0.72 for nitrogen without any other changes. Fig. 8 shows the
schematics of the computation domain, boundary conditions and
spatial meshes in channel. It was found in previous works that
the inlet and outlet reservoirs should be included to well model
the gas flow in finite length channel. The chamber-to-channel
length and width-to-channel height ratio were suggested larger
than one-tenth and three, respectively [52]. The far-pressure
inlet/out let boundary conditions were applied for the inlet and
outlet chambers and a constant 300 K wall temperature conditions
were used. The RKDG-3 method was employed to resolve the prob-
lem on 4 processors. The steady state solution was assumed to
have been reached when the residual of distribution functions
was less than 1 � 10�6. The RKDG numerical solution of this appli-
cation generally depends on three parameters: the chamber size,
the number of triangles and the number of discrete velocities. In
order to ensure that the results of the calculations presented here
are accurate to within a few percent, a convergence study was per-
formed by running the tests on different combinations of these
parameters. Finally, chamber size of 2.0 � 1.2 mm, 20 � 4 triangles
for channel and 7 � 16 triangles for chambers, and 8 � 25 discrete
velocities with an 8th order Gauss–Laguerre quadrature in magni-
tude and 3/8th Simpson integral in angle were employed. Further
enlargement of the chamber and increase of the numbers of trian-
gles and velocity points improved the results by a magnitude no
more than 1% to 2%. A time-interval of 6.1 � 10�9 s was used,
which took a total of 30,886 iterations within a cumulative CPU
time of about 164 h. Figs. 9 and 10 show the comparison of the
numerical and analytical solutions with slip boundary conditions
for pressure and x-component velocities. Excellent agreement is
observed and the relative differences between the two solutions
are within 1% and 2.5% respectively for pressure and velocity distri-
butions. The errors are mainly due to the finite length of chambers
and the analytical model error, since the precision of the analytical
solution has the order of O(H/L). It is believed the larger the cham-
ber size and the height–length ratio, the better the agreements. It is
worth mentioning the same test was run using DSMC method with
a total cost of 200,000 cells, 12.8 million simulated particles and
over 1,000,000 time steps to achieve similar accuracy that the dif-
ference in pressure of the numerical and analytical solutions does
not exceed 1% [53]. The DSMC calculations required well over
1000 h. Therefore, the deterministic approach is another very effi-
cient way for low Knudsen number and low-speed microscopic
flow simulations.
4.5. Parallel performance studies

In this section, we present results of the parallel performance
studies for the present RKDG codes on a queue of the CARTER par-
allel cluster in Purdue University. Specially, the queue has 4 nodes
with two 8-Core Intel Xeon-E5 processors and 32 GB RAM per
nodes. The Message-Passing Interface (MPI) standard implemented
here is MVAPICH2.

Several processors working on a fixed-size problem should be
able to solve the problem faster than a single processor. The Paral-
lel speedup is defined as S = Tserial/Tparallel, where Tserial is the CPU
time for a computational on 1 processor and Tparallel is the CPU time
for a computation using more than 1 processors. Ideally, the
speedup is equal to Np when Np processors are used. However,
using more processors needs additional communication opera-
tions. Therefore, using more processors simultaneously causes
decreasing calculation time and increasing communication time.
The speedup curve is approaching to a constant value first as the
number of processors increases. When further increasing Np, other
overhead time will finally drive the curve downward. As men-
tioned in Section 3, the complexity of the problems is proportional
to the numbers of N �M � k and also dependent on the type of
model.

We choose the two-dimensional conduction problem to investi-
gate the parallel performance, as this problem has a simple geom-
etry. Different model equations, numbers of velocity nodes, spatial
elements and basis functions were chosen to study their affect on
the parallel performance. All the cases were run with the same
time steps. Fig. 11 contains speedup and efficiency plots and the
optimal values are shown as the read dashed lines. The speedup
is good, and the efficiencies are within 60% up to 16 processors
in all cases. From the RKDG-2 cases for BGK model, we can see that
using more velocity nodes results in a better speedup. Although
using more velocity nodes can both increase the computation time
in serial simulation and communication time in parallel simula-
tion, the effect of the additional computation complexity is domi-
nated and gives better speedup. Due to the same reason, with same
velocity mesh and spatial mesh, RKDG-3 solver can also obtain a
better speedup than RKDG-2 solver. Comparing the simulations
using BGK and ES-BGK models, it is found that speedup for the
ES-BGK model is much better than BGK models. This is due to
the fact that ES-BGK model only brings in more computational
operations. Finally, the more spatial elements are used, the better
speedup is obtained. The test cases were simulated using 2D/2V
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code. However the results for the 2D3V simulations are expected
the same.

5. Conclusions

The high-order Runge–Kutta discontinuous Galerkin method
has been extended to 2D/2V and 2D/3V Boltzmann BGK and ES-
BGK kinetic model equation solution on arbitrary unstructured
spatial mesh. With this approach, the velocity space is first discret-
ized using either Cartesian or spherical type discrete velocity
methods. Then, the discrete partial differential equations are dis-
cretized on spatial triangle-type meshes using the discontinuous
Galerkin (DG) method. The linear and quadratic functions are cho-
sen as the basis functions respectively for the second-order and
third-order DG method. The system of ordinary differential equa-
tions, which is obtained from the spatial discretizations, is finally
discretized in time using a special class of explicit Runge–Kutta
time discretization methods. At each intermediate step of the RK
process, the equilibrium velocity distribution function in the model
equations is estimated using a discontinuous conservative discret-
ization method, which enforces a weak conservation of mass,
momentum and energy for the collision relaxation term. The
first-order upwind flux scheme is employed to evaluate the
numerical fluxes and five different boundary conditions including
the symmetry boundary, specular-diffuse moving wall with given
accommodation coefficient, periodic boundaries, for pressure
inlet/outlet boundaries, and supersonic inlet/outlet boundaries
are incorporated.

Verification of the formulation and solvers has been performed
by comparison with DSMC and analytical solutions for rarefied
compressible Couette flow, an oscillatory Couette flow in the slip
regime, near-continuum 2D thermal conduction problem and long
microchannel flow. Based on the Couette flow solutions obtained
on the 2D meshes with uniform elements, the second-order RKDG
solution requires significantly less memory and CPU time than that
of a widely used second-order FVM solver with the same accuracy.
Both structured and unstructured spatial meshes have been
applied in the solutions of the 2D conduction problem. Results
show that, the third-order RKDG method is more efficient than
the second-order discretization in physical space. It is also
observed that when an adaptive mesh with finer cells in large gra-
dient regions is used, the third-order RKDG solution takes less
memory and CPU time than that of the second-order one. The
unsteady test confirms the time-accurate discretization of the
RKDG method.

A physical space decomposition strategy is employed for paral-
lel computation. Because of the compact nature of the discontinu-
ous Galerkin discretization, communications are required only in
flux computations. Investigation of the parallel performance has
been conducted.
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