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Sound wave propagation in rarefied flows of molecular gases confined in micro-channels
is investigated numerically. We first validate the employed kinetic model against the
experimental results and then systematically study the gas damping and surface force on
the transducer as well as the resonance/anti-resonance in confined space. To quantify the
impact of the finite relaxation rates of the translational and internal energies on wave
propagation, we examine the roles of bulk viscosity and thermal conductivity in depth
over a wide range of rarefactions and oscillation frequencies. It is found that the bulk
viscosity only exerts influence on the pressure amplitude and its resonance frequency
in the slip regime in high oscillations. In addition, the internal degree of freedom is
frozen when the bulk viscosity of a molecular gas is large, resulting in the pressure
amplitude of sound waves in the molecular gas being the same as in a monatomic gas.
Meanwhile, the thermal conductivity has a limited influence on the pressure amplitude
in all the simulated flows. In the case of the thermoacoustic wave, we prove that the
Onsager–Casimir reciprocal relation also holds for molecular gases, i.e. the pressure
deviation induced by the temperature variation is equal to the heat flux induced by the plate
oscillation. Our findings enable an enhanced understanding of sound wave propagation in
molecular gases, which may facilitate the design of nano-/micro-scale devices.
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1. Introduction

Sound wave propagation at nano-/micro-scales plays a key role in a variety of applications,
e.g. vibrating micromechanical resonators in on-chip communication devices (Clark et al.
2005), acoustic transducers in microelectromechanical-system (MEMS) sensors such
as gyroscopes and accelerometers, and porous acoustic absorbers for sound reduction
(Yang & Sheng 2017). Since the geometric size shrinks to nano/micrometres and the
surface-to-volume ratio dramatically increases, gas rarefaction and surface effects such as
gas damping are significantly enhanced, which largely determine the devices’ performance
(Chigullapalli, Weaver & Alexeenko 2012). For instance, the Brownian noise level in
a MEMS accelerometer is dominated by the gas damping in its capacitive transducers
(Boom et al. 2021); the efficiency of sound absorption in an acoustic absorber is low
when gas damping is weak. Therefore, gaining a better understanding of rarefied gas
damping and gas–surface interaction in vibrating MEMS and porous structures is of
great importance for the design and operation of these nano-/micro-devices. Moreover,
as gases are contained in a confined space, resonance and anti-resonance can induce local
extreme pressure amplitudes, which is another important issue to be considered carefully
(Struchtrup 2012).

In addition to miniaturisation in size, the high frequency of a sound wave will also
generate rarefaction effects. Therefore, two Knudsen numbers are often introduced to
quantify the degree of rarefaction, i.e. the length-based Knudsen number (Knl), defined as
the ratio of the mean free path of gas molecules to the characteristic flow length, and the
time-based Knudsen number (Knt), the ratio between the molecular mean free time and the
process time scale. The traditional Navier–Stokes equations are adequate for describing gas
flows only when both Knudsen numbers are small, say, Knl/t < 0.001; otherwise, similar
to the flow conditions often found in nano-/micro-devices (Park, Bahukudumbi & Beskok
2004; Frangi, Frezzotti & Lorenzani 2007; Wang et al. 2018), gas kinetic theory needs to
be adopted to predict flow properties (Sharipov & Kalempa 2008; Kalempa & Sharipov
2009).

The kinetic theory has been exploited to investigate sound wave propagation in rarefied
gases confined in nano-/micro-channels. Through the solution of the Boltzmann equation
or its simplified kinetic model equations, gas damping properties including the spatial
variations of pressure amplitude, temperature and heat flux have been reported under
different oscillation frequencies and amplitudes (Garcia & Siewert 2005; Wang & Xu
2012). Resonance induced by the superposition of waves has also been investigated
(Desvillettes & Lorenzani 2012; Wu, Reese & Zhang 2014). In the high-frequency limit
where molecular collisions during the characteristic flow time scale can be ignored,
analytical solutions of the resonance and anti-resonance frequencies have been obtained
for one-dimensional and two-dimensional channel flows. Most of the aforementioned
studies focused on monatomic gases (Bisi & Lorenzani 2016); however, the most common
working gas is air, mainly composed of nitrogen and oxygen. Modelling sound wave
propagation in molecular (diatomic and polyatomic) gases is more difficult since the
kinetic equation describing the dynamics of rarefied flows of molecular gases is much
more complex than the Boltzmann equation.

Compared with monatomic gases, the molecules of a molecular gas possess internal
degrees of freedom due to the excitation of rotational, vibrational and electronic
modes. The finite rates of the relaxation processes associated with translational and
internal modes lead to more complex non-equilibrium phenomena. For instance, a new
transport coefficient, i.e. the bulk viscosity, emerges (Mandelshtam & Leontovich 1937;
Tisza 1942); meanwhile, the thermal conductivity contains not only the translational
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contribution but also internal components (Eucken 1913). Previous studies showed that
the bulk viscosity is determined by the relaxation rate between the translational and
internal energies, and the translational and internal thermal conductivities are respectively
determined by the relaxation rates of the translational and internal heat fluxes. These
additional transport mechanisms, however, can significantly affect the flow properties of
rarefied molecular gases such as the shock-wave structure (Kosuge & Aoki 2018), the
line shape of the Rayleigh–Brillouin scattering (Wu et al. 2020) and the flow velocity
of the thermal transpiration in micro-channels (Li et al. 2021; Su, Zhang & Wu 2021).
Some studies have been done to assess the properties of sound wave propagation in
molecular gases with single or multiple components, where the influence of the energy
exchange between different modes on the attenuation and phase velocity was addressed
(Dain & Lueptow 2001a,b; Ejakov et al. 2003; Rahimi & Struchtrup 2014; Arima, Ruggeri
& Sugiyama 2017; Kremer et al. 2018; Kustova et al. 2023). The investigations were
mainly based on continuum equations, including the Euler, Navier–Stokes, Grad’s moment
and rational extended thermodynamic equations. The non-equilibrium dynamics of the
relaxation of internal energies were modelled by additional relaxation equations according
to the multi-temperature method or state-specific description. The acoustic behaviour of
the attenuation coefficient with respect to the energy relaxation rate, gas species and sound
frequency was obtained and compared with experimental measurements. The acoustic
properties of the wave propagation were considered in homogeneous flows, so gas damping
due to the gas–surface interaction and resonance in confined space are not included. Note
that if the Euler/Navier–Stokes or moment equations are applied, it is implied that the
flow characteristic time scale is much larger than the mean free time of gas molecules (or
translation relaxation time); that is, Knt should be small enough (Rahimi & Struchtrup
2014).

To the best of the authors’ knowledge, a systematic study has yet to be conducted
that focuses on the effects of bulk viscosity (i.e. finite relaxation rate of translational
and internal energies) and thermal conductivity (i.e. finite relaxation rate of translational
and internal heat fluxes) on sound wave propagation in confined channels, particularly
under a wide range of Knudsen numbers and sound frequencies. In this work, we fill this
knowledge gap and reveal some unique propagation properties in rarefied molecular gases.
In addition to sound wave propagation, propagation of thermoacoustic waves induced
by periodic variation of temperature is also important to many engineering applications,
e.g. Pirani gauges, used to measure pressure in vacuum systems (Kalempa & Sharipov
2014). The Onsager–Casimir reciprocal relation (OCRR), an important principle that
links thermodynamic fluxes driven by different forces (Onsager 1931a,b; Casimir 1945),
becomes a powerful tool to validate simulation and measurement results and to reduce the
computational cost and the number of required experimental measurements. Previously,
a general approach has been proposed to demonstrate the OCRR for the rarefied flow of
monatomic gases (Sharipov 2006; Kalempa & Sharipov 2012). In this work, we examine
whether the OCRR holds for molecular gases.

The remainder of this paper is organised as follows: the kinetic model and boundary
conditions are described in § 2; the formulation of wave propagation is presented in § 3;
in § 4, we first validate the model against the experimental data and then investigate the
influence of the unique transport coefficients of molecular gases on gas damping, surface
force and resonance. Before concluding the work, we numerically prove that the OCRR
also holds for sound and thermal–acoustic wave propagation in molecular gases.
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2. Kinetic model

The Boltzmann equation was extended to molecular gases by Wang-Chang & Uhlenbeck
(1951), considering quantum mechanics where each internal energy level is assigned an
individual velocity distribution function; this yields a complicated operator for particle
collisions that is prohibitively expensive for numerical simulations. Several simplified
models using the relaxation-time approach have been developed (Morse 1964; Holway
& Lowell 1966; Rykov 1975; Gorji & Jenny 2013; Wu et al. 2015; Wang et al. 2017).

Generally, rarefied gas damping and resonance problems can be investigated by
seeking solutions of kinetic equations via the direct simulation Monte Carlo (DSMC)
(Hadjiconstantinou 2002; Emerson et al. 2007) method or the discrete velocity method
(DVM) (Kalempa & Sharipov 2009; Wu et al. 2014). The DSMC method uses a collection
of particles to mimic the behaviour of gas molecules: particles move through the spatial
space in a realistic manner, while intermolecular collisions and gas interactions are
calculated stochastically according to some collision models and pair-selection schemes
(Ivanov & Rogasinskii 1991; Bird 1994; Roohi et al. 2018). It was rigorously proved
that DSMC and the Boltzmann equation are equivalent for monatomic gases in the
dilute limit (Wagner 1992). For rarefied molecular gases, the Borgnakke & Larsen (1975)
phenomenological collision model was developed to reproduce the energy exchange
rate, where one continuous variable was introduced to represent the internal energies
of a molecular gas. Although DSMC is widely used for rarefied gas flows, it is very
time-consuming for oscillating problems (Park et al. 2004). The time step has to be
significantly small (compared with both the molecular mean free time and the time period
of oscillations) and the total simulation time should be sufficiently long to ensure that the
time-periodic state is achieved. In addition, in an unsteady DSMC algorithm, ensemble
averaging over thousands of different simulations for each time step is necessary to yield
noise-reduced solutions.

The DVM, on the other hand, falls into the category of deterministic approaches. It
relies on direct discretisation of the governing equation over computational grids and
so can produce noise-free solutions. Furthermore, by assuming small variations in flow
properties, the time-periodic flow can be converted into a quasi-steady-state problem and
the computational cost will be greatly reduced (see § 3). Therefore, in this work, we use
the DVM and a deterministic-based model (Li et al. 2021; Su et al. 2022) to investigate
wave propagation in rarefied molecular gases, which is modified from the Rykov model
(Rykov 1975). The model is able to recover the general temperature and thermal relaxation
rates that are predicted by the Wang-Chang–Uhlenbeck equation and can freely adjust the
relevant relaxation rates. Therefore, it can simultaneously obtain experimentally measured
values of the bulk viscosity and thermal conductivity for a given molecular gas (Wu et al.
2020; Li et al. 2021; Su et al. 2022), and their effects on the wave propagation can be
separately investigated. To avoid having too many parameters in the analysis, we assume
that vibrations of gas molecules are not activated. This assumption has limitations for
some polyatomic gases such as carbon dioxide and methane, where vibrational relaxation
plays a crucial role in wave attenuation (Ejakov et al. 2003; Kustova et al. 2023). In
such cases, a model taking into account both rotational and vibrational relaxations (Li
et al. 2023) is necessary, where additional relaxation rates are required. The rotational
mode is considered through the classical mechanics approach, with a continuous variable
representing the rotational energy. A brief description of the present kinetic model is given
in the following.

In the gas kinetic theory, the state of a molecular gas with excited rotational mode is
described by a one-particle velocity–energy distribution function f (t, x, v, I), which is a
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function of time t, spatial coordinate x = (x, y, z), molecular translational velocity v =
(vx, vy, vz) and rotational energy I. In the absence of external force, the evolution of f is
governed by (Rykov 1975; Su et al. 2022)

∂f
∂t

+ v · ∂f
∂x

= ptδ0

μ
(gt − f )︸ ︷︷ ︸

elastic

+ ptδ0

μZ
(gr − gt)︸ ︷︷ ︸

inelastic

. (2.1)

It can be seen that the collision operator (the term on the right-hand side) that describes
the change of f due to particle collisions is split into two parts: elastic collisions that
preserve translational energy and inelastic ones that exchange translational and rotational
energies. Both elastic and inelastic parts are expressed as a simple relaxation term, where
the relaxation time related to elastic collisions is μ/( ptδ0) with μ, pt and δ0 being the
gas shear viscosity, the pressure related to translational motions and a constant rarefaction
parameter, respectively. Here Z is the rotational collision number such that a gas molecule
would roughly experience one inelastic collision in every Z collisions, and gt and gr are
the translational and rotational reference distribution functions, respectively. The reference
distributions are series of orthogonal polynomials, expanding at the local equilibrium
distribution function E = Et(T)× Er(T), and can be expressed as

gt = Et(Tt)× Er(Tr)

[
1 + 4qt · c

15Ttpt

( |c|2
Tt

− 5
2

)
+ 4qr · c

dTtpr

(
I

Tr
− d

2

)]
, (2.2)

gr = Et(T)× Er(T)
[

1 + 4q′ · c
15Tp

( |c|2
T

− 5
2

)
+ 4q′′ · c

dTp

(
I
T

− d
2

)]
, (2.3)

with Et and Er being the local Maxwellian distributions

Et(T) = n
(πT)3/2

exp
(

−|c|2
T

)
, (2.4)

Er(T) = Id/2−1

Γ (d/2)Td/2 exp
(

− I
T

)
. (2.5)

In the above formulae: d is the number of rotational degrees of freedom; Γ (·) is the gamma
function; Tt, Tr, qt = (qx

t , qy
t , qz

t ) and qr = (qx
r, qy

r, qz
r) are the translational and rotational

temperatures and the related heat fluxes, respectively; and c = v − u is the peculiar
velocity with u = (ux, uy, uz) being the gas bulk velocity. The overall temperature T is a
weighted sum of the translational and rotational temperatures: T = (3Tt + dTr)/(3 + d).
The pressures are defined as pt = nTt and p = nT in terms of the translational and overall
temperatures, respectively, where n is the gas number density. Here q′ and q′′ are two
auxiliary heat fluxes, defined as linear combinations of the translational and rotational
heat fluxes (Li et al. 2021):[

q′
q′′

]
=

[
(2 − 3Att)Z + 1 −3AtrZ

−ArtZ 1 − ArrZ

] [
qt
qr

]
, (2.6)

where Aij (i, j = t or r) are the thermal relaxation rates.
Here, the density and temperatures are normalised by the reference density n0 and

temperature T0, respectively; the shear viscosity by its value at the reference temperature
μ0; velocities by the most probable speed vm = √

2kBT0/m, where kB is the Boltzmann
constant and m is the molecular mass; spatial coordinates by the characteristic flow length
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H; time by H/vm; the internal energy by kBT0; heat fluxes by n0kBT0vm; pressures by
n0kBT0; and the distribution functions by n0v

−3
m (kBT0)

−1. The rarefaction parameter is
therefore defined as

δ0 = p0H
μ0vm

, (2.7)

where p0 = n0kBT0. It is inversely proportional to the unconfined length-based Knudsen
number:

Knl =
√

π

2
1
δ0
. (2.8)

It is straightforward to show that the kinetic model recovers the Jeans–Landau
temperature relaxation model, i.e.

∂Tr

∂t
= ptδ0

μZ
(T − Tr) . (2.9)

In addition, the heat flux relaxation of the present model is consistent with that derived
from the Wang-Chang–Uhlenbeck equation by Mason & Monchick (1962). The heat flux
relaxation directly determines the thermal conductivity, as well as the translational and
rotational contributions (Mason & Monchick 1962; McCormack 1968), i.e.[

∂qt/∂t
∂qr/∂t

]
= −ptδ0

μ

[
Att Atr
Art Arr

] [
qt
qr

]
. (2.10)

Applying the Chapman–Enskog multiscale expansion to the kinetic model equation and
retaining the terms up to the order of O(1/δ), the Navier–Stokes equations can be derived,
and the transport coefficients are obtained immediately. The dimensionless bulk viscosity
μb (normalised by μ0) is given by

μb = 2dZ
3(d + 3)

μ, (2.11)

whereas the dimensionless translational conductivity κt and rotational conductivity κr
(normalised by 2kBμ0/m) are determined as

[
κt
κr

]
= μ

4

[
Att Atr
Art Arr

]−1 [
5
d

]
. (2.12)

In practice, it is more convenient to express the thermal conductivity in terms of the
Eucken factors (Eucken 1913):

2κt

μ
= 3

2
ft,

2κr

μ
= d

2
fr,

2κ
μ

= 2 (κt + κr)

μ
= 3 + d

2
feu, (2.13a–c)

where κ = κt + κr is the overall thermal conductivity and feu, ft and fr are the total,
translational and rotational Eucken factors, respectively.

For the numerical solution of our kinetic equation, a boundary condition is required
to determine the value of f at the boundary of a computational domain. Considering
a non-absorbing wall with velocity uw at temperature Tw, all the gas molecules (v′, I ′)
hitting the wall will return to the flow field with a new state (v, I). Given the unit normal
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Oscillating plate

Molecular gas

0 1

x

oruw(t) = Uwcos(St t)
Tw(t) = 1 + τwcos(St t)

Tw = 1

Stationary plate

Figure 1. Schematic diagram of sound and thermal–acoustic wave propagation in rarefied molecular gases
between two infinite, parallel and impermeable plates. The oscillating plate is positioned at x = 0 with
harmonically varying velocity (along the x direction) or temperature, and the stationary plate is at x = 1. The
stationary plate has a fixed temperature of Tw = 1. Both plates are fully diffuse walls.

vector, n, of the wall pointing towards the gas, the velocity–energy distribution function
of the molecules in the vicinity of the wall is

fw =
{

f −, (v′ − uw) · n ≤ 0,
f +, (v′ − uw) · n > 0, (2.14)

where f − and f + are the distributions of the incident and reflected molecules, respectively.
The correlation between the incident and reflected distribution functions is defined through
the reflection kernel R(v′ → v, I′ → I) as

(v − uw) · nf +(v, I)

= −
∫∫

(v′−uw) · n≤0
(v′ − uw) · nf −(v′, I′)R(v′ → v, I′ → I) dv′ dI′ (2.15)

for all (v′ − uw) · n > 0. For a fully diffuse wall, the reflection kernel is

R(v′ → v, I′ → I) = 2(v − uw) · nId/2−1

πΓ (d/2)T2+d/2
w

× exp
(

−(v − uw)
2

Tw
− I

Tw

)
. (2.16)

3. Formulation of wave propagation

The schematic diagram of the simulation set-up is shown in figure 1. Here, we specify the
formulation of wave propagation in rarefied molecular gases confined between two infinite,
parallel and impermeable plates located at x = 0 and x = 1, which can be treated as a
simple prototype of wave propagation in confined space. The plate at x = 0 may oscillate
harmonically at a constant frequency ω in its normal direction so that the velocity varies
as

uw(t) = UmRe{exp (iSt t)}, (3.1)

and a sound wave is induced in the gas. This plate may attain unsteady heating so that its
temperature varies as

Tw(t) = 1 + τmRe{exp (iSt t)}, (3.2)

and a thermal–acoustic wave is consequently induced. In (3.1) and (3.2), ‘i’ is the
imaginary unit, Re{·} denotes the real part of a complex expression, and Um and τm are
the maximum speed and perturbed temperature of the plate, respectively. The constant St
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is the normalised oscillation frequency, defined as the Strouhal number

St = ωH
vm
. (3.3)

Note that the two driving forces have the same frequency. The time-based Knudsen number
correlates with Knl and St through

Knt = μ0ω

p0
= 2KnlSt√

π
, (3.4)

where p0/μ0 is the reference collision frequency of gas molecules.
We are interested in the flow state when the oscillation has been fully established. As a

consequence, the time-dependent behaviour of the gas is periodic with the same frequency
as the oscillation stimuli. We further assume that the velocity and perturbed temperature of
the plate are sufficiently small quantities, i.e. um � 1 and τm � 1; hence, the gas system
deviates slightly from its reference equilibrium state, which is described by the global
Maxwellian

E0 = Id/2−1

π3/2Γ (d/2)
exp

(
−|v|2 − I

)
, (3.5)

and the kinetic equations can be linearised by representing the distribution function as

f (t, x, v, I) = E0[1 + Re{h(x, v, I) exp(iSt t)}], (3.6)

where |h| � 1 is the amplitude of the perturbed distribution function. The macroscopic
flow properties of interest are also expressed by the following complex functions:

n(t, x) = 1 + Re {ρ(x) exp (iSt t)} ,
ux(t, x) = Re {U(x) exp (iSt t)} ,

Tt(t, x) = 1 + Re {τt(x) exp (iSt t)} ,
Tr(t, x) = 1 + Re {τr(x) exp (iSt t)} ,

qx
t (t, x) = Re {Qt(x) exp (iSt t)} ,

qx
r(t, x) = Re {Qr(x) exp (iSt t)} ,

pxx(t, x) = 1 + Re {P(x) exp (iSt t)} ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

where pxx is the gas pressure in the direction of wave propagation. Here
[ρ,U, τt, τt,Qt,Qr,P] are complex quantities, which can be represented in exponential
form as

M (x) = Mam (x) exp [iφM (x)] , M = ρ,U, τt, τr,Qt,Qr,P, (3.8a,b)

where Mam and φ are the real functions corresponding to the amplitude and phase of a
periodic function. Note that for the spatial coordinates, all the variables depend only on x,
since the propagation of the wave is restricted to this direction.
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Substituting (3.6) and (3.7) into the kinetic equation (2.1) and neglecting all the
nonlinear terms, we obtain the equation for h, written as

iSt h + vx
∂h
∂x

= δ0

[
ρ + 2Uvx + τt

(
|v|2 − 3

2

)
+ τr

(
I − d

2

)

+ 4
15

Qtvx

(
|v|2 − 5

2

)
+ 4

d
Qrvx

(
I − d

2

)
− h

]

+ δ

Z

[
(τ − τt)

(
|v|2 − 3

2

)
+ (τ − τr)

(
I − d

2

)

+4(Q′ − Qt)v

15

(
|v|2 − 5

2

)
+ 4(Q′′ − Qr)v

d

(
I − d

2

)]
, (3.9)

where τ = (3τt + dτr)/(3 + d), and Q′ and Q′′ are related to Qt and Qr according to (2.6).
The boundary condition for h is

h+ = √
πUm − 2

√
π

∫∫
v′

x≤0
v′

xE0h− dv′ dI′

+ 2Umvx + τm

(
|v|2 − 5

2

)
+ τm

(
I − d

2

)
at x = 0,

h+ = 2
√

π

∫∫
v′

x>0
v′

xE0h− dv′ dI′ at x = 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

where h+ and h− denote the reflected and incident perturbed distribution functions. Once
h is known, the macro-quantities are calculated from the velocity moments as

[ρ,U, τt, τr,Qt,Qr,P]

=
∫∫ [

1, vx,
2
3
|v|2 − 1,

2
d

I − 1, vx

(
|v|2 − 5

2

)
, vx

(
I − d

2

)
, v2

x

]
E0h dv dI.

(3.11)

By introducing complex expressions, the time variable in the governing equation
system is eliminated. The technique of computational fluid dynamics for time-independent
problems is adopted to find deterministic solutions, which can greatly reduce the
computational cost. The details about the computational issues are given in the following
section and Appendix A. Note that this method cannot be used to simulate the propagation
of a strong wave with large amplitude. In such a circumstance, the assumption that
variant flow properties have the same oscillating frequency as the external stimuli may
break down, and a weak shock wave may be generated and propagate in space (Cox,
Mortell & Reck 2001; Tang, Cheng & Xu 2001). Then, time-dependent nonlinear kinetic
equations should be applied to investigate such flows. Numerical methods with efficient
shock-capture schemes, e.g. the unified gas kinetic schemes, should be used (Wang & Xu
2012; Wang et al. 2018).

4. Results and discussion

In this section, we investigate sound and thermoacoustic wave propagation in rarefied
molecular gases. A wide range of rarefactions and oscillation frequencies will be
considered. The influence of non-equilibrium relaxations between the translational and
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rotational modes, in particular the bulk viscosity μb and the Eucken factors ft and fr, will
be examined.

4.1. Validation of kinetic model and numerical scheme
As the disturbance in the gas is restricted to the x direction, the dependence of the
governing equation system on vy, vz and I can be eliminated by introducing auxiliary
distribution functions that have independent variables x and vx. The details of the reduced
system, designed to reduce computational cost, are explained in Appendix A. The kinetic
equations are solved by the DVM, where vx is truncated to the range of [−6, 6] and
partitioned by Nv non-uniformly distributed points according to

vx = 6
(Nv − 1)3

(−Nv + 1,−Nv + 3, . . . ,Nv − 1)3. (4.1)

In this partition, the majority of the discrete velocities are located around vx = 0;
consequently, it is able to capture the discontinuity and rapid oscillation in the perturbed
velocity distribution function near vx = 0 at the plate positioned at x = 0 (Kalempa &
Sharipov 2009; Wu 2016). We set Nv = 80, 300 and 300 for Kn = 0.01, 0.1 and 10,
respectively, to obtain smooth solutions. The spatial domain x ∈ [0, 1] is divided into Nx
elements with refinement in the vicinity of the two plates, where the boundary nodes of
the elements are calculated by

x = s3(10 − 15s + 6s2), s = (0, 1, . . . ,Nx)

Nx
. (4.2)

We set Nx = 64 for all cases. The spatial derivatives are approximated by the fourth-order
discontinuous Galerkin method. To seek stable solutions, a semi-implicit time-iterative
scheme is applied and the iteration stops when the residuals of density, velocity and
temperature are less than 10−7. The details of the numerical scheme can be found in
Su et al. (2020). The independence of the obtained results on velocity and spatial grids
is verified: when the discrete velocities and spatial elements are further doubled, the
maximum difference is not larger than 1 % for the macro-quantities including the pressure
amplitude.

We validate our numerical solutions by comparing them with the experimental
measurements of Greenspan (1959). In the experiment, the working gas was nitrogen, and
all measurements were conducted in a two-crystal interferometer. The emitting crystal
was fixed and energised at a constant voltage by a crystal-controlled electron-coupled
oscillator, generating a sound frequency of approximately 1 MHz. The receiving crystal
was connected to a movable slider while the displacement of the crystal receiver was
measured. Processed through the filter and amplifier, the change in gas pressure was finally
obtained.

The rotational degree of freedom for nitrogen is d = 2. For numerical solutions, we set
the rotational collision number to Z = 2.67 and the thermal relaxation rates to Att = 0.786,
Atr = −0.201, Art = −0.059 and Arr = 0.842; thus feu = 1.993, ft = 2.365 and fr =
1.435. These parameters are measured from the DSMC simulation in order to match the
total thermal conductivity of nitrogen at T0 = 300 K obtained from the Rayleigh–Brillouin
scattering (Wu et al. 2020; Li et al. 2021). The numerical and experimental results are
compared in terms of the variations of the dimensionless attenuation coefficient α and
sound speed vph against Knt. These acoustic parameters can be expressed in terms of the
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Figure 2. Model validation: (a) variation of the pressure amplitude on the receptor with the Strouhal number
St; (b) variation of the phase on the receptor with St; (c) comparison of dimensionless sound speed and
attenuation coefficient between the simulation results and the experimental data (Greenspan 1959).

amplitude Pam and φP of the perturbed gas pressure at x = 1 as

α = −
√
γ

2
d ln Pam

dSt
, vph = c0

β
, (4.3a,b)

where γ = 7/5 is the ratio of specific heats for linear molecules, c0 is the adiabatic sound
speed and β is the dimensionless phase parameter defined as

β =
√
γ

2
dφP

dSt
. (4.4)

Numerical solutions of α and β are obtained by the pointwise method (Sharipov, Marques
Jr & Kremer 2002; Garcia & Siewert 2005; Wang & Xu 2012). The values of Pam and φP
can be obtained using (3.8a,b).

In the experiment, the Strouhal number St was controlled by adjusting the distance
between the sound source and the receptor since the oscillation frequency was fixed. In
addition, Pam and φP depend strongly on St (Sharipov et al. 2002; Struchtrup 2012);
see figure 2(a,b). When St is small, i.e. the source and the receptor are close to each
other, distinctive peaks and valleys appear in Pam due to resonance. As the distance
between the plates grows, no resonance is observed because of the strong damping in
a rarefied gas, resulting in a very weak reflected wave. Note that the phase φP also
exhibits non-monotonic variations when St is small. Since no data were provided for
the geometrical set-up of the sound source and receptor in the experiment, in order to
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Figure 3. The change of pressure amplitude in the x direction: (a) St = 1; (b) St = 4; (c) St = 8. Here Knl is
set to 0.01, 0.1, 1 and 10.

eliminate the influence of resonance, d(ln Pam)/dSt and dΦP/dSt in (4.3a,b) and (4.4)
are determined by the linear tails of the curves in figure 2(a,b). Figure 2(c) shows the
comparison between the simulated and measured results, from which we found that our
simulations can capture the essential acoustic properties of sound wave propagation in
rarefied molecular gases.

4.2. Investigation of gas damping
Because of energy dissipation, gas damping occurs in sound wave propagation. In this
section, the change of pressure amplitude is used to describe the property of gas damping
in the flow channel. The gas is nitrogen, and the free parameters d, Z and Aij are the same
as those used in the previous section. Figure 3 shows the profile of the pressure amplitude
under different Knl and St.

In a confined flow, resonance and anti-resonance will appear due to the superposition
of incident and reflected waves. The intensity of resonance is determined by the reflected
wave as the input energy is constant. In figure 3(a), the collisions between particles are
more frequent with smaller St and Knl, which means more energy can be transferred to
the receptor, resulting in a stronger reflected wave. Consequently, the resonance is stronger
as well. It can be seen that the pressure amplitude at the entrance is smaller than that
at the receptor because of anti-resonance. With increasing Strouhal number, e.g. St = 4 in
figure 3(b), the reflected wave is weaker and the pressure amplitude at the entrance is larger
than that at the receptor when Knl ≥ 0.1. In figure 3(c), the collisions between particles
are infrequent as St is large. The resonance becomes obvious when Kn is large.
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Figure 4. The change of pressure amplitude in the x direction under various rotational collision numbers.
A wide range of rarefaction and oscillation frequencies are simulated: (a) St = 1, Knl = 0.01; (b) St = 1,
Knl = 0.1; (c) St = 1, Knl = 10; (d) St = 8, Knl = 0.01; (e) St = 8, Knl = 0.1; ( f ) St = 8, Knl = 10.

Now we investigate the influence of the bulk viscosity on gas damping. In addition to
nitrogen, we consider two more pseudo-gases with the rotational collision number Z being
113 and 14 250; the other parameters d and Aij remain the same as those for nitrogen.
Note that the choice of high Z values was made to investigate the impact of extremely
slow relaxation. Previous estimations based on sound attenuation coefficients showed that
certain real gases, such as CO2, may exhibit large rotational collision numbers and bulk
viscosity at low temperature (Cramer 2012). However, recent experimental evidence has
indicated that the ratio of the bulk to shear viscosity is approximately 3–5 for CO2 at
low temperature (Wang, Ubachs & Van De Water 2019). Therefore, the high rotational
collision number is a result of incorrect splitting of rotational and vibrational modes, and
the slow vibrational relaxation should be taken into account when predicting the high
attenuation coefficient in CO2 (Kustova et al. 2023). For comparison, we also simulate
sound wave propagation in a monatomic gas, which is described by the Shakhov equation
(Kalempa & Sharipov 2009). The profiles of pressure amplitude along the flow channel
are shown in figure 4. When Knl and/or St are relatively large, e.g. Knl = 0.1 and St = 8
or Knl = 10 regardless of St, there is no difference between the simulated gases. This is
because the bulk viscosity exerts influence through inelastic collisions; when the degree
of rarefaction is high, the molecular collisions are infrequent, so the pressure profiles are
not affected by bulk viscosities as they rely on translational energy and there is negligible
energy transfer between translational and rotational energies. When Knl and St decrease,
the particle collisions become more frequent, so the bulk viscosity plays an important
role in determining the pressure amplitude. Interestingly, the pressure amplitude of a
molecular gas with large bulk viscosity is very close to that of a monatomic gas under
all the considered Knudsen and Strouhal numbers. This is because the internal degrees
of freedom are frozen when Z is large, i.e. inelastic collisions are rare. The underlying
mechanism will be further discussed in § 4.3.

Now we investigate the influence of thermal conductivity on gas damping by changing
the values of the translational and rotational Eucken factors. We keep the rotational
collision number Z = 2.67, the total Eucken factor feu = 1.993, Atr = −0.201 and Art =
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Figure 5. The change of pressure amplitude in the x direction under different translational Eucken factors. The
gas is nitrogen. A wide range of rarefaction and oscillation frequencies are simulated: (a) St = 1, Knl = 0.01;
(b) St = 1, Knl = 0.1; (c) St = 1, Knl = 10; (d) St = 8, Knl = 0.01; (e) St = 8, Knl = 0.1; ( f ) St = 8, Knl =
10.

−0.059 the same as the experimental values for nitrogen. Figure 5 shows the pressure
amplitude under translational Eucken factors of 1.5, 2.0 and 2.5. The corresponding
rotational Eucken factors and the two diagonal elements Att and Arr can be obtained
through (2.12) and (2.13a–c). In contrast to the bulk viscosity, the thermal conductivity
exerts limited influence on gas damping over a wide range of Knl and St.

4.3. Surface force on transducer
We now evaluate the surface force on the transducer in molecular gases, which can be
obtained from the gas pressure at the plate. Therefore, we focus on the change of gas
pressure amplitude at x = 0 under different transport coefficients and flow conditions.

The relationships between the pressure amplitude Pam and the Strouhal number St
under different rotational collision numbers Z and Knudsen numbers Knl are shown in
figure 6. It is found that when Knl is not small, say equal to or larger than 1, the effect
of particle collisions can be neglected and the profiles of Pam remain nearly unchanged
regardless of Z. Therefore, we focus on examining the flow properties in three distinct flow
regimes: Knl = 0.01, Knl = 0.1 and Knl = 10. In all the flow regimes, as St increases, Pam
decreases until the first anti-resonance frequency and then increases to a peak value, which
is referred to as the resonance frequency. After exceeding the first resonance frequency,
Pam changes slightly and tends to be constant when St becomes large. In order to analyse
Pam quantitatively, we first consider the case where the oscillation frequency is much
larger than the mean molecular collision frequency, i.e. when Knl St 	 1. In this case, the
collision term in (3.9) can be neglected (Kalempa & Sharipov 2009; Wu 2016). Therefore,
we obtain the reduced equation

iSt h + vx
∂h
∂x

= 0. (4.5)
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Figure 6. The relationship between the pressure amplitude and St under different rotational collision numbers.
The results of four flow regimes are shown here: (a) Knl = 0.01, (b) Knl = 0.1, (c) Knl = 1 and (d) Knl = 10.
The rotational collision number Z is set to 2.67, 10, 100 and 10 000.

Combining this with the boundary condition on the left plate, we can finally obtain the
value of the pressure amplitude on the transducer (x = 0) at the high-frequency limit as

Pam(x = 0) → 2√
π

+
√

π

2
≈ 2. (4.6)

In figure 6(b,d), when the frequency is large, e.g. St is larger than 6, Pam approaches 2.
However, when Knl is 0.01 (see figure 6a), Pam is slightly less than 2 at large Strouhal
numbers owing to the fact that particle collisions are frequent and cannot be neglected.

Now, we examine the anti-resonance and resonance frequencies. Through the confined
flow channel, the molecules leave the left plate with velocity vp, are reflected by the right
plate, and finally return to the left plate. Without collision, the total travel distance for a
molecule in the x direction is 2H. Thus, we obtain the following equation:

2H ≈ vp δt, (4.7)

where δt is the travel time of each molecule. When the travel time satisfies

δt = 2nπ

ω
or

(2n − 1)π
ω

, n ∈ N+, (4.8)

the molecules leaving and coming back to the left plate have the same or opposite phase,
corresponding to the resonance or anti-resonance point. Replacing ω by St, we finally
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Figure 7. (a) The change of pressure amplitude under different rotational collision numbers with St = 2.0, 4.0,
6.0 and 8.0, where the two dotted lines denote argon at St = 2.0 and St = 8.0; (b) amplitude of the translational,
rotational and total temperatures for different rotational collision numbers with St = 6.0.

obtain the resonance frequency Str and anti-resonance frequency Sta as

Str ≈ vp

vm
nπ, n ∈ N+, (4.9)

Sta ≈ vp

vm

(2n − 1)π
2

, n ∈ N+. (4.10)

For free molecular flow (Knl = 10), the collisions between particles can be neglected
and the travel distance of molecules in the x direction is 2H. In addition, the gas flow
slightly deviates from the global equilibrium state, so vp ≈ vm. Then, we obtain the first
resonance frequency Str ≈ π ≈ 3.14 and the first anti-resonance frequency Sta ≈ π/2 ≈
1.57 through (4.9) and (4.10), which are consistent with the results shown in figure 6(d).
When Knl = 0.1 and Knl = 0.01, the increased frequency of collisions makes the free
movement of molecules more difficult. Thus, the real travel time of particles is larger than
2H/vp. Therefore, the first resonance frequency and anti-resonance frequency are smaller
than the respective theoretical values.

The influence of the bulk viscosity on the pressure amplitude at x = 0 is also
investigated. As shown in figure 6, the bulk viscosity only affects the pressure amplitude in
the slip regime (Knl = 0.01). In the transition and free molecular flow regimes (Knl = 0.1
and Knl = 10), because of infrequent particle collisions, the bulk viscosity exerts limited
influence on Pam. Therefore, we focus only on the slip flow regime. From figure 6(a),
it is found that the value of Pam varies at a fixed St for different bulk viscosities. To
reveal the underlying physics, we further plot the profile of Pam under different rotational
collision numbers with different St numbers; see figure 7(a). It can be seen that with
increasing Z, Pam is first found to monotonically converge to the constant value of a
corresponding monatomic gas (i.e. the dotted line in figure 7a). The result indicates that the
internal degrees of freedom will be frozen for large bulk viscosities because of negligible
inelastic collisions, as we have discussed in § 4.2. We now further explain this phenomenon
here. There is only one inelastic collision in a total of Z collisions, which transfers the
energy between translational and internal energies. When Z is large, the inelastic collision
frequency is low and then internal energy transfer can be ignored within the characteristic
time of the flow field, so the pressure amplitude of molecular gases is equal to that of the
corresponding monatomic gases. This is called the frozen state or the local thermodynamic
equilibrium (Jaeger, Matar & Müller 2018).
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Figure 8. The relationship between the pressure amplitude and St under different translational Eucken factors.
Four flow regimes are investigated: (a) Knl = 0.01; (b) Knl = 0.1; (c) Knl = 1; and (d) Knl = 10. The
translational Eucken factor ft is set to 1.5, 2 and 2.5.

In order to provide more evidence, we plot the change of perturbed temperature under
different Z with St = 6.0. As shown in figure 7(b), the perturbed rotational temperature τr
decreases continuously with the increase of Z due to the decrease of inelastic collisions.
When the rotational collision number is large, e.g. more than 1000, the perturbed rotational
temperature is close to zero. Consequently, the perturbed overall temperature is reduced to
τ ≈ 0.6τt for molecular gases (d = 2) as expected theoretically.

Figure 6(a) shows that the bulk viscosity also influences the resonance frequency.
Specifically, the emergence of the resonance frequency will be delayed under large bulk
viscosities, and this trend is more obvious when St is large. As mentioned previously, when
the value of Z is reduced, inelastic collisions become more frequent. Such collisions result
in higher rotational energy and lower translational energy of the gas molecules in sound
wave propagation. This causes an increase in travel time. Consequently, the resonance
frequencies decrease when the bulk viscosity decreases. For instance, when Z = 2.67 and
10, the first resonance frequencies are slightly smaller than those of Z = 100 and 10 000.
In addition, since the resonance state varies with bulk viscosity, the initial variation of Pam
depends on St as shown in figure 7(a).

The influence of thermal conductivity on the surface force is also investigated. The
total Eucken factor is fixed at feu = 1.993 while the value of ft is varied. As shown in
figure 8, the Eucken factor has little influence on the pressure amplitude and the resonance
frequency.
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5. Onsager–Casimir reciprocal relationship

In this section, we examine whether the OCRR also holds for molecular gases. If we
consider a weakly non-equilibrium system where some irreversible processes occur, then
the corresponding physical law can be described in a general linear form as

Jk =
∑

n

ΛknXn, (5.1)

where Xn are driven forces, Jk are conjugated thermodynamic fluxes and Λkn is the
matrix of kinetic coefficients. The non-diagonal elements Λkn (k /= n) contain solutions
corresponding to the forces Xk and Xn. If the form of the thermodynamic flow Jk is chosen
so that the entropy production s in the statistical system is expressed as

s =
∑

k

JkXk, (5.2)

then the kinetic coefficients satisfy

Λt
kn = Λt

nk, (5.3)

where the superscript t means that each coefficient Λkn, composed of two solutions k and
n, is calculated from the time-reverted molecular state of one of these solutions.

From the Boltzmann equation, the thermodynamic fluxes and forces can be identified
for gas flows, and the kinetic coefficients are derived as (Sharipov 2006)

Λkn =
∫
Σ

(
v · nh(k)w , h(n) − 1

2
h(n)w

)
dΣ − iSt

((
h(k), h(n)

))
, (5.4)

Λt
kn =

∫
Σ

(
T v · nh(k)w , h(n) − 1

2
h(n)w

)
dΣ − iSt

((
T h(k), h(n)

))
, (5.5)

where Σ represents solid walls that enclose the flow field Ω , hw is given by the wall
velocity and temperature as

hw = 2v · uw + τw

(
|v|2 − 5

2

)
+ τw

(
I − d

2

)
, (5.6)

and the binary operations (·, ·) and ((·, ·)) are defined for the two arbitrary functions as

(φ, ψ) =
∫∫

E0φ(x, v, I)ψ(x, v, I) dv dI, (5.7)

((φ, ψ)) =
∫
Ω

(φ,ψ) dx. (5.8)

Finally, T is the operator reversing the state of molecules in time,

T φ(x, v, I) = φ(x, vt, It), (5.9)

which is self-conjugate, i.e.
(T φ,ψ) = (T ψ, φ) . (5.10)

For the sound wave stimulated by oscillation of the transducer and the thermoacoustic
wave induced by a temperature oscillation, the thermodynamic forces are defined as

XU = um, XT = τm, (5.11)
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and then the perturbed distribution can be expressed as

h(x, v, I) = h(U)(x, v, I)XU + h(T)(x, v, I)XT . (5.12)

In addition, hw that defines the boundary condition can also be decomposed as

hw(x, v, I) = h(U)w (x, v, I)XU + h(T)w (x, v, I)XT , (5.13)

where

h(U)w =
{

2vx, x = 0,
0, x = 1, (5.14)

h(T)w =
⎧⎨
⎩

(
|v|2 − 5

2

)
+

(
I − d

2

)
, x = 0,

0, x = 1.
(5.15)

Using the reciprocal relation, i.e. (5.1), the kinetic coefficients given by (5.4) and (5.5),
and the self-conjugate property described by (5.10), we obtain(

T vxh(U)w , h(T)
)

x=0
−

(
T vxh(U)w , h(T)

)
x=1

=
(
T vxh(T)w , h(U)

)
x=0

−
(
T vxh(T)w , h(U)

)
x=1

+
(
T vxh(U)w , h(T)w

)
x=0

−
(
T vxh(U)w , h(T)w

)
x=1

. (5.16)

Inserting h(U)w and hT
w, we have

(
T 2|v|2, h(T)

)
x=0

=
(
T vx

(
|v|2 − 5

2

)
, h(U)

)
x=0

+
(
T vx

(
I − d

2

)
, h(U)

)
x=0

+
(
T 2|v|2,

(
|v|2 − 5

2

))
x=0

+
(
T 2|v|2,

(
I − d

2

))
x=0

, (5.17)

and thus
P(T) = −Q(U)t − Q(U)r = −Q(U), x = 0. (5.18)

If we use h(T)(1 − x, v, I) instead of h(T)(x, v, I), the boundary condition is then
transformed into

h(T)w (1 − x) =
⎧⎨
⎩

0, x = 0,(
|v|2 − 5

2

)
+

(
I − d

2

)
, x = 1. (5.19)

The reciprocal relation gives(
T 2|v|2, h(T)(1 − x)

)
x=0

= −
(
T vX

(
|v|2 − 5

2

)
, h(U)(x)

)
x=1

−
(
T vX

(
I − d

2

)
, h(U)(x)

)
x=1

, (5.20)

and thus
P(T) = Q(U)t + Q(U)r = Q(U), x = 1. (5.21)
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Figure 9. The variation of pressure amplitude and heat flux under different St: (a) x = 0 and (b) x = 1. The
solid lines denote the pressure amplitude while the hollow points represent the heat flux. Three colours denote
different flow regimes: red represents the slip regime (Knl = 0.01), blue represents the transition regime (Knl =
0.1) and yellow represents the free molecular flow regime (Knl = 10).

Therefore, the OCRR for wave propagation in molecular gases is confirmed by (5.18)
and (5.21), which show that the magnitude of the deviation of gas pressure at the walls
induced by the thermoacoustic wave is equal to the magnitude of the total heat flux (sum
of the translational and internal heat fluxes) induced by the sound wave.

We further show the numerical results for the pressure amplitude and the total heat flux
under a wide range of St and Knl. The results on the transducer and receptor are shown in
figure 9. In all the flow regimes, the pressure amplitude in the thermoacoustic wave agrees
with the heat flux in the sound wave, suggesting that the OCRR also holds for molecular
gases.

The comparison between the pressure amplitude of the thermoacoustic wave and the
total heat flux of the sound wave under different values of the bulk viscosity and thermal
conductivity is shown in figure 10. The simulation is conducted in the slip regime with
Kn = 0.01. It is evident that the OCRR is valid under different values of bulk viscosity
and thermal conductivity. From the left column of figure 10, we can see the influence of
the bulk viscosity and thermal conductivity on the thermoacoustic wave. In figure 10(a),
the resonance frequency is shifted when the bulk viscosity is altered, which is similar
to the behaviour of the sound wave. The only difference lies in the value of Pam. In the
case of the thermoacoustic wave, the pressure variation is generated by the oscillation
of temperature, resulting in a significantly lower pressure amplitude than that in the
sound wave. Figure 10(c,d) shows that thermal conductivity has little influence on the
pressure amplitude of the thermoacoustic wave and the heat flux amplitude of the sound
wave.

6. Conclusions

We have investigated sound wave propagation in rarefied molecular gases over a wide range
of rarefactions and oscillation frequencies. We first evaluate the influence of the transport
coefficients on gas damping, and find that both rarefaction and oscillation frequency
affect the pressure amplitude and resonance/anti-resonance of the sound wave. As for the
transport coefficients, the bulk viscosity only exerts influence on the pressure amplitude at
small Knl and St. At larger Knl and St, the pressure amplitude is not affected by the bulk
viscosity. The pressure amplitude converges to the value of the corresponding monatomic
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Figure 10. Comparison between the pressure amplitude of the thermoacoustic wave and the total heat flux of
the sound wave under different values of the bulk viscosity and thermal conductivity. The pressure amplitude
of the thermoacoustic wave is shown in (a,c) while the total heat flux of the sound wave is shown in (b,d).

gas as the bulk viscosity increases. Our results show that the internal degrees of freedom
are frozen at large bulk viscosity, so the rotational mode has little influence and the results
are similar to those for a monatomic gas. Meanwhile, thermal conductivity has a limited
effect on the pressure amplitude and the total heat flux of the sound wave.

The propagation of thermoacoustic waves has also been investigated. We have proved,
both analytically and numerically, that the OCRR holds for molecular gases.
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Appendix A. Derivation of the one-dimensional kinetic model

To reduce the computational cost, we first eliminate the dependency of h on the rotational
energy I by introducing the two reduced distribution functions

h0 =
∫

E0
r h dI, h1 =

∫
E0

r Ih dI (A1a,b)

and further letting

h2 = h1 − d
2

h0, (A2)

where the equilibrium distribution function E0
r can be expressed as

E0
r = Id/2−1

Γ (d/2)
exp(−I). (A3)

The governing equations eventually become

iSt h0 + vx
∂h0

∂x
= δ

[
ρ + 2Uvx + τt

(
|v|2 − 3

2

)
+ 4

15
Qtvx

(
|v|2 − 5

2

)
− h0

]

+ δ

Z

[
(τ − τt)

(
|v|2 − 3

2

)
+ 4(Q′ − Qt)vx

15

(
|v|2 − 5

2

)]
, (A4)

h2 + vx
∂h2

∂x
= δ

[
d
2
τr − h2

]
+ dδ

2Z
(τ − τr)+ 2δ

Z
Q′′′vx, (A5)

where

Q′′′ = −ArtZQt + Z(1 − Arr)Qr. (A6)

The macroscopic quantities are calculated from h0 and h2 as

[ρ,U, τt,Qt] =
∫ [

1, vx,
2
3
|v|2 − 1, vx

(
|v|2 − 5

2

)]
E0

t h0 dv, (A7)

[τr,Qr] =
∫ [

2
d
, vx

]
E0

t h2 dv. (A8)

Now we transform the governing equations from the three-dimensional velocity space
to the one-dimensional velocity space by introducing the following reduced distributions:

Φ0(x, vx) = 1
π

∫
exp(−v2

y − v2
z )h0 dvy dvz, (A9)

Φ1(x, vx) = 1
π

∫
exp(−v2

y − v2
z )

(
v2

y + v2
z − 1

)
h0 dvy dvz, (A10)

Ψ (x, vx) = 1
π

∫
exp(−v2

y − v2
z )h2 dvy dvz. (A11)
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Then the governing equations become

iStΦ0 + vx
∂Φ0

∂x
= δ

[
ρ + 2Uvx + τt

(
v2

x − 1
2

)
+ 4

15
Qtvx

(
v2

x − 3
2

)
−Φ0

]

+ δ

Z

[
(τ − τt)

(
v2

x − 1
2

)
+ 4(Q′ − Qt)vx

15

(
v2

x − 3
2

)]
, (A12)

iStΦ1 + vx
∂Φ1

∂x
= δ

[
τt + 4

15
Qtvx −Φ1

]
+ δ

Z

[
(τ − τt)+ 4(Q′ − Qt)vx

15

]
, (A13)

Ψ + vx
∂Ψ

∂x
= δ

[
d
2
τr − Ψ

]
+ dδ

2Z
(τ − τr)+ 2δ

Z
Q′′′vx. (A14)

The full diffuse boundary conditions for Φ0, Φ1 and Ψ can be obtained using

Φ0(x = 0, vx > 0) = √
πUm − 2

√
π

∫
vx≤0

vxE01
t Φ0 dvx + 2Umvx + τm(v

2
x − 1), (A15)

Φ0(x = 1, vx < 0) = √
πUm + 2

√
π

∫
vx≥0

vxE01
t Φ0 dvx + 2Umvx + τm(v

2
x − 1), (A16)

Φ1(x = 1, vx < 0) = Φ1(x = 1, vx > 0) = τw

(
v2

x − 3
2

)
, (A17)

Ψ (x = 1, vx < 0) = Ψ (x = 1, vx > 0) = d
2
τw, (A18)

with the equilibrium distribution function

E01
t = 1√

π
exp(−v2

x ). (A19)

The macroscopic quantities can be calculated using

[ρ,U, τt,Qt] =
∫ [

1, vx,
2
3

(
v2

x − 1
2

)
, vx

(
v2

x − 3
2

)]
E01

t Φ0 dvx

+
∫ [

0, 0,
2
3
, vx

]
E01

t Φ1 dvx, (A20)

[τr,Qr] =
∫ [

2
d
, vx

]
E01

t Ψ dvx. (A21)
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