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Abstract. In rarefied gas flows, the spatial grid size could vary by several orders of
magnitude in a single flow configuration (e.g., inside the Knudsen layer it is at the
order of mean free path of gas molecules, while in the bulk region it is at a much
larger hydrodynamic scale). Therefore, efficient implicit numerical method is urgently
needed for time-dependent problems. However, the integro-differential nature of gas
kinetic equations poses a grand challenge, as the gain part of the collision operator
is non-invertible. Hence an iterative solver is required in each time step, which usu-
ally takes a lot of iterations in the (near) continuum flow regime where the Knudsen
number is small; worse still, the solution does not asymptotically preserve the fluid
dynamic limit when the spatial cell size is not refined enough. Based on the general
synthetic iteration scheme for steady-state solution of the Boltzmann equation, we pro-
pose two numerical schemes to push the multiscale simulation of unsteady rarefied
gas flows to a new boundary, that is, the numerical solution not only converges within
dozens of iterations in each time step, but also asymptotically preserves the Navier-
Stokes-Fourier limit in the continuum flow regime, when the spatial grid is coarse, and
the time step is large (e.g., in simulating the extreme slow decay of two-dimensional
Taylor vortex, the time step is even at the order of vortex decay time). The properties
of fast convergence and asymptotic preserving of the proposed schemes are not only
rigorously proven by the Fourier stability analysis for simplified gas kinetic models,
but also demonstrated by several numerical examples for the gas kinetic models and
the Boltzmann equation.
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1 Introduction

Rarefied gas flows have attracted significant research interests in the past decades due to
their wide range of engineering applications, including space vehicle re-entry, microelec-
tromechanical system processing, and shale gas extraction. These flows are characterized
by the Knudsen number Kn, which is defined as the ratio of mean free path λ (or mean
collision time tc) of gas molecules to the characteristic flow length L (or time/period
t0). Only when the Knudsen number is small can the rarefied gas dynamics be well de-
scribed by macroscopic equations in the bulk flow region [1], such as the Euler, Navier-
Stokes-Fourier (NSF), Burnett, super-Burnett [2], and (regularized) Grad 13 and 26 mo-
ments equations [3]; see the short review on the performance of dozens macroscopic
equations [4]. Also noted that although the lattice Boltzmann method can simulate the
Poiseuille flow with the tuning of effective viscosity [5,6], they cannot be applied to gen-
eral rarefied gas flows [7]. For general values of Knudsen number, however, the Boltz-
mann equation or simplified gas kinetic equations, which uses the velocity distribution
function to describe the gas dynamics at the mesoscopic level, should be used.

Since the velocity distribution function is defined in the six-dimensional phase space,
the computational cost of memory and time for solving gas kinetic equations is huge.
Thus, many numerical methods are proposed to solve the kinetic equations under a nu-
merical scale larger than the kinetic one [8–15], that is, the spatial grid size ∆x≫λ, and/or
the time step ∆t ≫ τc. Some schemes asymptotically preserve the Euler limit, as they
become a consistent discretization of the Euler equations when Kn → 0 [9, 10]. Never-
theless, from a practical point of view, the Euler equations cannot be applied to most
flows, even when the Knudsen number is small. For instances, in the Poiseuille flow [16]
and Rayleigh-Brillouin scattering [17], the flow velocity and density perturbation scale
as 1/Kn. If the Euler equations are used, they become divergent, which is not physi-
cal. Therefore, some numerical schemes are designed to asymptotically preserve the NSF
limit when ∆t≫τc [11,12], under the assumption that the spatial derivatives are handled
exactly. Recently, it is found that the NSF limit can be captured by the (discrete) unified
gas-kinetic scheme, when both the time step and spatial cell size are much larger than the
corresponding kinetic scales [13, 14, 18, 19]: ∆x∼

√
KnL≫λ and ∆t∼

√
Knt0≫τc.

In reality, rarefied gas flows are intrinsically multiscale, say, in the two-dimensional
thermal edge flow in the (near) continuum flow regime where the Knudsen number is
small [17], the spatial grid size varies by several orders of magnitude: inside the Knudsen
layer (which occupies a spatial region within a few mean free path away from the solid
walls) ∆x∼λ∼0.001, while in the bulk region it is at a much larger hydrodynamic scale:
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∆x∼ L∼1. Such a disparate distribution of grid cell size is necessary, as the fine grid in
the Knudsen layer helps to capture the ghost effect that arises from the rarefaction effects
inside the Knudsen layer and determines the velocity field in the whole computational
domain [20], while the coarse grid help to save the computational cost; our numerical
tests show that, if the Knudsen layer is under-resolved, the vortexes rotate in wrong
directions. Therefore, for time-dependent problems, it is highly desired to use the implicit
numerical method, otherwise the time step in explicit numeral methods will be restricted
by the Courant–Friedrichs–Lewy condition, namely, ∆t∼τc , which renders any practical
numerical simulation impossible when the (local) Knudsen number is small.

However, a grand challenge arises for implicit numerical method, since the integro-
differential nature of the gas kinetic equations makes the gain part of the collision oper-
ator non-invertible. Therefore, an iterative solver is required in each time step. A simple
way is to use the conventional iterative scheme (CIS), where the time derivative, stream-
ing operator, and loss part of the collision operator are evaluated at the current iteration
step, while the gain part of the collision operator is obtained from the previous iteration
step. The CIS is efficient when the Knudsen number is large, but it takes a lot of itera-
tions in the (near) continuum flow regime; worse still, the CIS does not asymptotically
preserve the NSF limit, so a huge number of spatial cells should be used to capture the
gas dynamics [16]. To improve the efficiency of implicit iteration, a fast-converging and
asymptotic NSF preserving scheme is urgently needed.

Thanks to Larsen’s pioneering work on neutron transport [21], the acceleration of
convergence is possible if the kinetic equation and its moment equations are coupled:
the kinetic equation provides high-order moments to close the moment equations (dif-
fusion equations in the content of neutron transport), while the moment equations pro-
vide macroscopic quantities appearing in the gain part of the collision operator. Since
the diffusion equation allows efficient exchange of information (i.e., radiation intensity),
fast convergence is reached; also, since the diffusion equation is the asymptotic macro-
scopic equation of the kinetic equation for neutron transport when the Knudsen number
is small, the spatial grid cell can be much larger than the mean free path. The essential
idea was extended to the gas kinetic system, such as the high-order/low-order (HOLO)
method [22] for the Bhatnagar-Gross-Krook (BGK) model [23], the moment guided Monte
Carlo method [24], the synthetic iterative scheme for the kinetic model equations [25–32]
where the flow velocity is perpendicular to the computational domain, and the gen-
eral synthetic iterative scheme (GSIS) for the Boltzmann equation [33, 34]. Here we
focus on the deterministic solver. In the Sod shock tube problem, it was found that
in each time step HOLO finds the converged solution within dozens of iterations [22],
while the CIS needs thousands of iterations. Albeit this promising property, the stability
and asymptotic NSF preserving of HOLO have not been rigorously analyzed. On the
other hand, while the fast convergence and asymptotic NSF preserving of GSIS has been
proven [17, 34, 35], so far it has been limited to steady-state problems.

In this paper, we extend the GSIS to time-dependent problems, retaining its unique
properties of fast convergence and asymptotic NSF preserving. In GSIS, the kinetic equa-
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tion and macroscopic synthetic equations can be solved by different numerical methods
with different orders of accuracy. This brings tremendous numerical convenience be-
cause the kinetic equation, which requires discretization in the high-dimensional phase
space, is usually time-consuming and hence should be handled by as simple an algo-
rithm as possible. The macroscopic synthetic equations, on the contrary, are well studied
in computational fluid dynamics and can be handled by sophisticated high-order numer-
ical methods. From the point of view of practical applications, we hope the developed
kinetic schemes could use as large time step and spatial cell size as possible. That is,
we hope ∆t and ∆x can be chosen as the maximum ones used in the NSF equations to
capture continuum flow dynamics accurately.

The rest of the paper is organized as follows. In Section 2 the Boltzmann equation
and its simplified kinetic model equations is introduced, together with their limit hydro-
dynamic equations at small Knudsen numbers. In Section 3 the CIS to solve the time-
dependent kinetic model equations is introduced and the convergence rate of iterations
is calculated by the Fourier stability analysis, at the whole range of Knudsen number
and different time steps. In Sections 4 and 5 two general synthetic iterative schemes are
proposed and their convergence rates are calculated for kinetic model equations. That of
HOLO is also calculated and compared. In Section 6 the conditions for asymptotic NSF
preserving are analyzed. Several numerical examples are used to assess the accuracy
and efficiency of the proposed GSIS for time-dependent problems in Sections 7 and 8,
based on kinetic model equations and the Boltzmann equation, respectively. Finally, the
summaries and outlooks are given in Section 9.

2 Kinetic equations and moment equations

The Boltzmann equation is written in the following dimensionless form:

∂ f

∂t
+v· ∂ f

∂x
+a· ∂ f

∂v
=
∫∫

B(|v−v∗|,θ)( f ′∗ f ′− f∗ f )dΩdv∗, (2.1)

where f (t,x,v) is the velocity distribution function that depends on the time t∈R
+, the

molecular velocity v=(v1,v2,v3)∈R
3, and the spatial coordinates x=(x1,x2,x3)∈R

3. v∗
is the velocity of the second molecule in a binary collision, while prime stands for the
velocity distribution function after the binary collision, with θ being the deflection angle.
B(|v−v∗|,θ) is the collision kernel, which is determined by the intermolecular potential.
In this paper, we consider the following form of collision kernel for inverse power-law
potentials:

B(|v−v∗|,θ)=
5×22ωδrp

64
√

2πΓ2(9/4−ω/2)
|v−v∗|2−2ω sin

1
2−ω(θ), (2.2)

where Γ is the gamma function, ω is the viscosity index so that the gas viscosity µ is
proportional to the temperature raised by the power ω. For Maxwell gases, we have
ω=1, while for hard-sphere gases we have ω=1/2. More details can be found in Ref. [36].
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Note that in the above two equations, the spatial coordinates and molecular velocity
have been normalized by the characteristic flow length L and the most probable speed
vm=

√
2kBT0/m, respectively, where kB is the Boltzmann constant, T0 is the reference tem-

perature, and m is the molecular mass. The time has been normalized by L/vm and the
external acceleration a has been normalized by v2

m/L. The velocity distribution function
is normalized by n0/v3

m, where n0 is the reference number density of gas molecules. The
rarefaction parameter δrp (its inverse is related to the Knudsen number Kn) is

δrp=
pL

µ(T0)vm
=

√
π

2Kn
, (2.3)

where p is the reference gas pressure. When δrp is large, the Boltzmann equation becomes
stiff, which requires special care to make the solution converge quickly and asymptoti-
cally preserve the NSF limit, even with coarse spatial grid and large temporal step.

The macroscopic quantities, such as the number density n, flow velocity u, tempera-
ture T, pressure tensor pij, and heat flux q, which are normalized by n0, vm, T0, n0kBT0,
and n0kBT0vm, are calculated from the velocity distribution function as

n=
∫

f dv, u=
1

n

∫

v f dv, T=
2

3n

∫

|v−u|2 f dv,

pij =2
∫

(vi−ui)(vj−uj) f dv, qi=
∫

|v−u|2(vi−ui) f dv.
(2.4)

Also, the deviatoric stress tensor σij is defined as σij = pij−nkBTδij, where δij is the Kro-
necker delta.

2.1 The linearized kinetic equations

If the external actuation is small so that the gas system is only slightly deviated from
the global equilibrium, the Boltzmann equation can be linearized. Normally we express
the velocity distribution function as f = feq+γh, where feq(v) is the global equilibrium
velocity distribution function

feq(v)=
exp(−v2)

π3/2
, (2.5)

and γh(t,x,v) is the perturbation velocity distribution function, with γ being some di-
mensionless quantity characterizing the external actuation. The evolution of h is then
governed by the linearized Boltzmann equation

∂h

∂t
+v· ∂h

∂x
−2a·v feq =LB(h)≡L+

B −νeq(v)h, (2.6)

where

L+
B (h)=

∫∫

B(|v−v∗|,θ)[ feq(v
′)h(v′

∗)+ feq(v
′
∗)h(v

′)− feq(v)h(v∗)]dΩdv∗ (2.7)
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can be viewed as a gain term of the linearized Boltzmann collision operator, while νeq(v)h
is the loss term, with the equilibrium collision frequency being

νeq(v)=
∫∫

B(θ,vr) feq(v∗)dΩdv∗. (2.8)

The macroscopic quantities, such as the perturbation density ρ, flow velocity u, pertur-
bation temperature τ, stress σij, and heat flux q are defined as the velocity moments of
the velocity distribution function:

̺=
∫

hdv, u=
∫

vhdv, τ=
2

3

∫ (

v2− 3

2

)

hdv,

σij =2
∫

v〈ivj〉hdv≡2
∫ (

vivj−
v2

3
δij

)

hdv, q=
∫ (

v2− 5

2

)

vhdv,

(2.9)

which, on top of the normalized used in Eq. (2.4), are further normalized by the dimen-
sionless external actuation γ.

Our goal is to extend the GSIS to the Boltzmann equation for unsteady flow simula-
tions. However, due to the extreme complexity of the Boltzmann equation, in order to
prove the fast convergence and asymptotic preserving properties of GSIS, we will use the
following simplified kinetic model equation (while those of the Boltzmann equation will
only be demonstrated by the numerical simulations in Section 8):

∂h

∂t
+v· ∂h

∂x
=L(h)≡L+−δrph, (2.10)

where

L+=δrp

[

̺+2u·v+τ

(

v2− 3

2

)

+
4(1−Pr)

5
q·v

(

v2− 5

2

)]

feq. (2.11)

The kinetic model reduces to the linearized BGK [23] and Shakhov [37] models when the
Prandtl number is Pr= 1 and 2/3, respectively. For real monatomic gases, the Prandtl
number is approximately 2/3. Note that in the BGK model, the heat flux does not appear
in the collision operator (2.11).

On multiplying Eq. (2.6) or Eq. (2.10) by 1, 2v, and v2− 3
2 , respectively, and integrating

the resultant equations with respect to the molecular velocity v, we obtain the following
equations for the evolution of density, velocity, and temperature:

∂̺

∂t
+

∂ui

∂xi
=0,

2
∂ui

∂t
+

∂̺

∂xi
+

∂τ

∂xi
+

∂σij

∂xj
=0,

3

2

∂τ

∂t
+

∂qj

∂xj
+

∂uj

∂xj
=0,

(2.12)



J. Zeng, W. Su and L. Wu / Commun. Comput. Phys., 34 (2023), pp. 173-207 179

which are not closed since the expressions for stress σij and heat flux q are not known. To
close these moment systems, one either uses the Chapman-Enskog expansion [2] or the
Grad moment method [3, 38, 39]. However, the resultant equations are valid only up to
finite values of Knudsen number. For instance, to the first order of Knudsen number, the
constitutive relation is exactly the Newton’s law for shear stress and the Fourier’s law for
heat conduction:

σij =−2δ−1
rp

∂u<i

∂xj>
≡−δ−1

rp

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)

,

qi =− 5

4Pr
δ−1

rp

∂τ

∂xi
.

(2.13)

To describe the rarefied gas dynamics over the entire region of Knudsen numbers, it is
necessary to solve the gas kinetic equation numerically.

3 Conventional iterative scheme

A direct method to solve the kinetic equation, which is a complicated integro-differential
equation, is the use of CIS. To calculate the convergence rate, we consider the following
typical temporal discretization of Eq. (2.10) for unsteady problems:

hn+1−hn

∆t
+

v

2
·
(

∂hn+1

∂x
+

∂hn

∂x

)

= rLn+1+(1−r)Ln, (3.1)

where the quantities with the subscript n are evaluated at the time tn, ∆t = tn+1−tn is
the time step, and the parameter r varies between 0.5 and 1 [19, 22]. When r= 1/2, the
scheme is second-order accuracy in time, while when r=1 it is a backward Euler scheme
with first-order temporal accuracy.

Since Ln+1 is a function of hn+1, Eq. (3.1) must be solved iteratively. In CIS, given the
value of velocity distribution function hk

n+1 at the k-th iteration step (this is often called
inner iteration in time-dependent implicit schemes [19]), its value at the next iteration
step is calculated by:

hk+1
n+1−hn

∆t
+

v

2
·
(

∂hk+1
n+1

∂x
+

∂hn

∂x

)

= r
(

L+,k
n+1−δrphk+1

n+1

)

+(1−r)Ln, (3.2)

and this process is repeated until the relative difference in macroscopic quantities be-
tween two consecutive inner iterations are less than a fixed value.

We adopt the Fourier stability analysis to investigate the efficiency of this inner itera-
tion, that is, to see how fast the error decays as k increases. We define the error function
between velocity distribution functions at two consecutive inner iterations as

Yk+1(x,v)=hk+1
n+1(x,v)−hk

n+1(x,v), (3.3)
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and the error functions for macroscopic quantities M=[̺,u,τ,q] between two consecutive
inner iteration steps as

Φk+1(x)≡
[

Φk+1
̺ ,Φk+1

u ,Φk+1
τ ,Φk+1

q

]

=Mk+1
n+1(x)−Mk

n+1(x)=
∫

Yk+1(x,v)φ(v)dv, (3.4)

where

φ(v)=

[

1, v1, v2, v3,
2

3
v2−1, v1

(

v2− 5

2

)

, v2

(

v2− 5

2

)

, v3

(

v2− 5

2

)]

. (3.5)

From Eq. (3.2), it can be easily found that Yk+1(x,v) satisfies

(

1+
1

r∆tδrp
+

1

2rδrp
v·∇

)

Yk+1= feq

[

Φk
̺+2Φk

u ·v+Φk
τ

(

v2− 3

2

)

+
4(1−Pr)

5
Φk

q ·v
(

v2− 5

2

)]

, (3.6)

because in the (n+1)-th time step, all variables in the n-th time step are fixed and hence
eliminated.

To determine the error decay rate e we perform the Fourier stability analysis by seek-
ing the eigenfunctions Ȳ(v) and α=[α̺,αu,ατ ,αq] of the following forms:

Yk+1(x,v)= ekȲ(v)exp(iθ·x),
Φk+1(x)= ek+1αexp(iθ·x),

(3.7)

where θ= (θ1,θ2,θ3) is the wavevector of perturbation and i is the imaginary unit. The
iteration is unstable when the error decay rate is larger than unity, while slow (fast) con-
vergence occurs when the error decay rate |e| approaches one (zero). Note that the two
exponents in the right-hand-side of Eq. (3.7) are different, due to the fact that in CIS we
first need macroscopic quantities to start the iteration.

Obviously, from Eqs. (3.4) and (3.7) we have

eα=
∫

Ȳ(v)φ(v)dv, (3.8)

and from Eqs. (3.6) and (3.7), we have

Ȳ(v)=

[

α̺+2αu ·v+ατ

(

v2− 3

2

)

+
4(1−Pr)

5
αq ·v

(

v2− 5

2

)]

y0(v), (3.9)

where

y0(v)=
feq

1+(r∆tδrp)−1+i(2rδrp)−1θ·v . (3.10)
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Figure 1: The error decay rate as a function of the Knudsen number in CIS, GSIS, and HOLO [22], when
r=1/2. Note that the iteration is unstable when the error decay rate is larger than one. Also note that in the
BGK model with ∆t=1, the error decay rates of GSIS-I and HOLO almost overlap.

On multiplying Eq. (3.9) with φ(v) and integrating the resultant equations with respect
to the molecular velocity v, we obtain eight linear algebraic equations for eight unknown
elements in α with the help of Eq. (3.8). These algebraic equations can be written in the
matrix form as C8α⊤= eα⊤, where the superscript ⊤ is the transpose operator, and 8×8
matrix is

C8=
∫ [

1,2v,v2− 3

2
,
4(1−Pr)

5
v

(

v2− 5

2

)]⊤
φ(v)y0(v)dv. (3.11)

The error decay rate can be obtained by numerically computing the eigenvalues of the
matrix C8 and taking the maximum absolute value of e; results as functions of the Knud-
sen number, for both the BGK and Shakhov models, are shown in Fig. 1. It is clear that
when the Knudsen number is large, e goes to zero so that the error decays quickly. This
means that CIS is rather efficient for highly rarefied gas flows, i.e., the converged solution
can be found within dozens of iterations [33]. On the contrary, e→1 when Kn→0, which
means that the CIS is extremely slow in the (near) continuum flow regime.
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4 The scheme II GSIS

To expedite the convergence of inner iteration, that is, to reduce the number of k in
Eq. (3.2), macroscopic synthetic equations are needed. There are several ways of con-
structing these equations, and we first develop GSIS-II for time-dependent problems due
to its relative simplicity [35].

First, in GSIS, given the value of velocity distribution function hk
n+1 at the k-th iter-

ation step, its value at the intermediate (k+1/2)-th step is obtained in a similar way as
Eq. (3.2):

hk+1/2
n+1 −hn

∆t
+

v

2
·
(

∂hk+1/2
n+1

∂x
+

∂hn

∂x

)

= r
(

L+,k
n+1−δrphk+1/2

n+1

)

+(1−r)Ln. (4.1)

This velocity distribution function hk+1/2
n+1 will be used to construct high-order constitutive

relations in the macroscopic synthetic equations; and when the synthetic equations are
solved to obtain macroscopic quantities, say, Mk+1

n+1 = [̺,u,τ,q], they will be used in the
gain term (2.11) for the next inner iteration, until convergence criterion is met.

Certainly, the macroscopic synthetic equations should be derived exactly from the gas
kinetic model. In GSIS-II, the constitutive relations are constructed, with a free parameter
δ, in the following manner [35]:

σk+1
ij =−2δ−1 ∂uk+1

<i

∂xj>
+

(

σk+1/2
ij +2δ−1 ∂uk+1/2

<i

∂xj>

)

, (4.2)

qk+1
i =− 5

4Pr
δ−1 ∂τk+1

∂xi
+

(

qk+1/2
i +

5

4Pr
δ−1 ∂τk+1/2

∂xi

)

. (4.3)

At first glance, the GSIS-II appears to be very similar to the HOLO [22]. However, in
HOLO the effective rarefaction parameter δ is chosen to be infinity in Eqs. (4.2) and (4.3),
while in GSIS the NSF constitution relations are explicitly included in the macroscopic
synthetic equations by setting δ= δrp, which allows fast convergence and unconditional
stability when using large time step, as will be shown later.

The macroscopic synthetic equations are solved by the following Crank-Nicolson
scheme (although other schemes can also be used):

̺k+1

∆t
+

1

2

∂uk+1
i

∂xi
=

̺n

∆tn
− 1

2

∂ui,n

∂xi
,

2
uk+1

i

∆t
+

1

2

∂

∂xj

(

̺k+1+τk+1+σk+1
ij

)

=2
ui,n

∆t
− 1

2

∂

∂xj

(
̺n+τn+σij,n

)
,

3

2

τk+1

∆t
+

1

2

∂qk+1
i

∂xi
+

1

2

∂uk+1
i

∂xi
=

3

2

τn

∆t
− 1

2

∂qi,n

∂xi
− 1

2

∂ui,n

∂xi
,

(4.4)
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where terms in the left-hand-side are evaluated at the (n+1)-th time step (for clarity the
subscript is ignored), while these on the right-hand-side are evaluated at the n-th time
step.

Therefore, to calculate the convergence rate of the time-dependent GSIS, the error
functions are defined as

Yk+1/2(x,v)=hk+1/2
n+1 (x,v)−hk

n+1(x,v)= ekȲ(v)exp(iθ·x),
Φk+1(x)=Mk+1

n+1(x)−Mk
n+1(x)= ek+1αexp(iθ·x).

(4.5)

Note that here the macroscopic quantities Mk+1 are calculated from the synthetic equa-
tions (4.4), rather than directly from the velocity distribution function hk+1/2. After some
algebra, the error decay rate can be obtained by solving the following linear systems:

e

[
2

∆t
α̺+iθkαuk

]

=0,

e

[(
4

∆t
+

θ2

δ

)

αuj
+

θj

3δ
θkαuk

+iθj(α̺+ατ)

]

=Sj+1,

e

[
3

∆t
ατ+iθk(αqk

+αuk
)

]

=0,

e

(
5i

4Pr
θjδ

−1ατ+αq j

)

=Sj+5,

(4.6)

where k is the dummy index, j=1,2,3, and the source terms are

Sj+1=
∫
[

θ2vj

δ
+

θj

3δ
θkvk−2iθkv〈jvk〉

]

Ȳ(v)d3v,

Sj+5=
∫ [

5i

4δPr
θj

(
2

3
v2−1

)

+vj

(

v2− 5

2

)]

Ȳ(v)d3v.

(4.7)

Eqs. (4.6) and (4.7) can be rearranged as L8eα⊤
M =R8α⊤

M, and the error decay rate can be
obtained from the eigenvalues of the matrix L−1

8 R8. A comparison of GSIS-II and HOLO
is shown in Fig. 1, which clearly show that HOLO is unstable at large time step, say, when
∆t=15 and |θ|=1.

5 The scheme I GSIS

This time-dependent scheme is modified from Ref. [33] which is initially developed to
find steady-state solutions of the Boltzmann equation and kinetic model equations. In
addition to the five macroscopic equations for the mass, momentum and energy conser-
vations (2.12), the evolution equations for the stress and heat flux are also included, like
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that in the Grad 13 moment equations [3]. That is, we multiply Eq. (2.10) by v〈ivj〉 and
integrate the resultant equation with respect to the molecular velocity v, and obtain

∂σij

∂t
+2

∫

v〈ivj〉v·
∂h

∂x
dv=−δrpσij. (5.1)

However, unlike the Grad 13 moment system where the high order term (i.e., the second
term in the left-hand-side) is closed by expanding the velocity distribution function into
Hermite polynomials of the molecular velocity, in GSIS-I Eq. (5.1) is rearranged in the fol-
lowing form to reflect the Newton’s law for shear viscosity, which shall allow numerical
stability when the time step is large:

∂σij

∂t
+2

∫

v〈ivj〉v·
∂h

∂x
dv−2

∂u<i

∂xj>
︸ ︷︷ ︸

HoTσij

+2
∂u<i

∂xj>
=−δrpσij

︸ ︷︷ ︸

Newton’s law

.
(5.2)

This equation is solved, again, by the Crank-Nicolson scheme:

(
1

∆t
+

δrp

2

)

σk+1
ij +

∂uk+1
<i

∂xj>
=

[(
1

∆t
− δrp

2

)

σij,n−
∂u<i,n

∂xj>
−

HoTσij,n

2

]

−
HoTk+1/2

σij

2
. (5.3)

It is noted that, when the inner iteration converges, HoTk+1/2
σij

will be the same as HoTk+1
σij

,

and hence this numerical scheme is a Crank-Nicolson scheme with second-order accu-
racy in time.

Likewise, we multiply Eq. (2.10) by vi(v
2−5/2) and integrate the resultant equation

with respect to v; we obtain

∂qi

∂t
+
∫ (

v2− 5

2

)

viv·
∂h

∂x
dv− 5

4

∂τ

∂xi
︸ ︷︷ ︸

HoTqi

+
5

4

∂τ

∂xi
=−δrpPrqi

︸ ︷︷ ︸

Fourier’s law

,
(5.4)

which can also be solved by the Crank-Nicolson scheme as

(
1

∆t
+

δrp

2
Pr

)

qk+1
i +

5

8

∂τk+1

∂xi

=

[(
1

∆t
− δrp

2
Pr

)

qi,n−
5

8

∂τn

∂xi
−HoTqi,n

2

]

−
HoTk+1/2

qi

2
. (5.5)

In GSIS-I, the macroscopic synthetic equations are given by Eqs. (2.12), (5.2) and (5.4).
Although they resemble the Grad 13 moment equations [3, 38], no approximations are
introduced here, since the higher-order terms are computed directly from the velocity
distribution function.
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According to the Fourier stability analysis for Eqs. (4.4), (5.3), and (5.5), the error
decay rate can be obtained by solving the following equations:

e

[
2

∆t
α̺+iθkαuk

]

=0,

e

[(

4

∆t
+

θ2

δrp+
2

∆t

)

αuj
+

θj

3δrp+
6

∆t

θkαuk
+iθj(α̺+ατ)

]

=Sj+1,

e

[
3

∆t
ατ+iθk(αqk

+αuk
)

]

=0,

e

(

5iθjατ

4(δrpPr+ 2
∆t)

+αq j

)

=Sj+5,

(5.6)

where j=1,2,3, and the source terms are

Sj+1=
1

δrp+
2

∆t

∫ [

θ2vj+
θj

3
θkvk−2Θθkv〈jvk〉

]

Ȳ(v)d3v,

Sj+5=
i

δrpPr+ 2
∆t

∫ [
5

4
θj

(
2

3
v2−1

)

−Θvj

(

v2− 5

2

)]

Ȳ(v)d3v,

(5.7)

with Θ= θkvk.
Numerical results for the BGK and Shakhov models when ∆t=1 and 15 are shown in

Fig. 1. For the Shakhov kinetic model, GSIS-I has a smaller error decay rate than GSIS-II,
especially when Kn→0 the error decay rate of GSIS-I goes to zero, while that of GSIS-II
goes to 1/3. This is because the heat flux appears in the gain term (2.11) of the Shakhov
model, and the GSIS-I has the synthetic equation (5.4) to guide the evolution of heat flux.
However, GSIS-II does not have this capability, resulting in a slower convergence (larger
error decay rate e) than GSIS-I. For the BGK model, both GSIS schemes have the error
decay rate approaching zero when Kn→ 0, because only the density, velocity and tem-
perature appears in the collision term, and both schemes have the evolution equations
for these macroscopic quantities.

6 The property of asymptotic preserving

From a practical point of view, the property of asymptotic NSF preserving should be in-
vestigated based on the numerical scale solving the kinetic equation and the macroscopic
synthetic equations [18]. Since in GSIS the kinetic equation and the synthetic equations
can be solved by different numerical methods with different orders of accuracy, here we
consider the influence of spatial and temporal discretizations in the gas kinetic solver on
the accuracy of GSIS, based on the assumptions that the spatial grid size ∆x and the time
step ∆t are refined enough to capture the physical solution of NSF equations. Namely,
we investigate at what values of α and β, can the macroscopic synthetic equations be
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exactly reduced to the NSF equations when Kn is small, through the Chapman-Enskog
expansion [2] of the discretized gas kinetic equation, with the following scaling:

∆x∼Kn1/α, ∆t∼Kn1/β. (6.1)

Note that the spatial grid size ∆x and time step ∆t have been normalized by the char-
acteristic flow length L and time (L/vm), respectively. Here α and β denote the order of
accuracy in the asymptotic preserving of NSF equations. Clearly, the larger the values of
α and β, the better the numerical scheme. If α=∞, the scheme will capture the hydrody-
namical behavior when ∆x is approximately the system size (no matter what the value of
Kn is), as long as this size is sufficient to capture the flow physics. On the other hand, if
β=∞, the scheme will capture the hydrodynamical behavior when ∆t is approximately
the characteristic time of the system (e.g., the oscillation period of a sound wave).

Since when the Knudsen number is small, the error decay rate of GSIS is much smaller
than unity (i.e., zero in GSIS-I for both BGK and Shakhov models, and 1/3 in GSIS-II
scheme when the Shakhov model is used), the converged solution can be found within a
few inner iterations. Thus, we have hk+1

eq = hk
eq and Mk+1 = Mk. When the inner iteration

is converged, the iterative scheme (3.2) can be expressed as

∂h

∂t
+v· ∂h

∂x
+O(∆tm1)δt(h)+O(∆xm2 )δx(h)=Ls , (6.2)

where m2 is the order of approximation for the spatial derivative in the kinetic equation,
while δx(h) is the (m2+1)-th order derivative of h with respect to the spatial coordinates.
For instance, if the second-order upwind finite difference scheme is used, we have m2=2.
Similar applies to m1 and δt(h).

6.1 Chapman-Enskog expansion

In the Chapman-Enskog expansion the velocity distribution function is approximated by
the Taylor expansion h=h(0)+Knh(1)+Kn2h(2)+··· , so are the stress and heat flux

σij =
∞

∑
ℓ=0

Knℓσ
(ℓ)
ij , q=

∞

∑
ℓ=0

Knℓq(ℓ), (6.3)

where σ
(ℓ)
ij = 2

∫
v〈ivj〉h

(ℓ)dv and q(ℓ)=
∫ (

v2− 5
2

)
vh(ℓ)dv. However, the five conservative

variables CM={ρ,u,τ} are calculated only according to the zeroth-order expansion. That
is,

ρ=
∫

h(0)dv, u=
∫

vh(0)dv, τ=
2

3

∫ (

v2− 3

2

)

h(0)dv, (6.4)

with the compatibility condition
∫

h(ℓ)dv =
∫

vh(ℓ)dv =
∫

v2h(ℓ)dv = 0 for ℓ ≥ 1. From
Eq. (6.4) and the compatibility condition, one finds that the time derivatives in Eq. (2.12)
can be formally written as a series in Kn [38]: ∂

∂t =∑
∞
ℓ=0Knℓ ∂

∂tℓ
.
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6.2 GSIS-I

By substituting the Taylor expansion of velocity distribution function into Eq. (6.2) and
collecting terms with the order of Kn−1, we have

h(0)=

[

̺+2u·v+τ

(

v2− 3

2

)]

feq, (6.5)

and σ
(0)
ij =q(0)=0, with the following largest scaling:

∆x∼Kn1/∞ =O(1), ∆t∼Kn1/∞=O(1). (6.6)

Under this circumstance, by collecting terms with the order Kn0, we have

h(1)=−∂h(0)

∂t0
−v· ∂h(0)

∂x
−O(∆tm1)δt(h)−O(∆xm2 )δx(h)
︸ ︷︷ ︸

discretization error terms

. (6.7)

Note that in the standard Chapman-Enskog expansion, this h(1) term is used to produce
the NSF constitutive relations (2.13). Although there are some error terms in h(1), this
does not affect the exact derivation of the NSF constitutive relations in GSIS-I. This is
because we only need h(0) to evaluate the stress and heat flux according to Eqs. (5.2)
and (5.4), while the h(1) term will result in the constitutive relations at the order of Kn2.
Specifically, let us take the evolution equation for the stress as an example. When the
inner iteration is converged, Eq. (5.2) becomes

∂σij

∂t
+2

∫

v〈ivj〉v·
∂h

∂x
dv=−δrpσij. (6.8)

Since σij ∝ Kn, the leading order solution is

σ
(1)
ij =− 2

δrp

∫

v〈ivj〉v·
∂h(0)

∂x
dv=− 2

δrp

∂u<i

∂xj>
, (6.9)

which is exactly the Newton’s law of stress.
Therefore, GSIS-I asymptotically preserves the NSF equations with the largest scal-

ings (6.6). That is to say, as long as the spatial resolution ∆x =O(1) and the temporal
resolution ∆t=O(1) are able to capture the physical solution of the NSF equations, GSIS-
I is able to recover the linearized NSF equations when Kn→0. This means that the overall
order of accuracy of GSIS-I depends only on the order of accuracy in solving the macro-
scopic synthetic equations. In reality, however, such a large spatial grid size ∆x=O(1)
cannot be used in regions with Knudsen layer or shock structure, where the physical so-
lutions require a spatial resolution of O(Kn). Fortunately, these kinetic layers only take
up a small fraction of the computational domain, say, in the vicinity of solid walls, which
can be captured by implicit schemes with non-uniform spatial discretization. This will be
demonstrated in Section 7.3 below. Likewise, such a large temporal step ∆t=O(1) will
be much reduced to the maximum time step in solving the NSF equations accurately; this
will be demonstrated in Section 7.1.
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6.3 GSIS-II

We now follow the standard procedure to see at what conditions can the NSF equations
be recovered from the macroscopic synthetic equations in GSIS-II. At the zero-order ap-
proximation, we have Eq. (6.5), and the following Euler equations:

∂̺

∂t0
+

∂ui

∂xi
=0,

2
∂ui

∂t0
+

∂̺

∂xi
+

∂τ

∂xi
=0,

3

2

∂τ

∂t0
+

∂uj

∂xj
=0,

(6.10)

that relate to the time derivative to spatial derivatives.
With the largest scaling (6.6) h(1) is given by Eq. (6.7). If one calculates the stress and

heat flux according to Eq. (2.9), then the constitutive relations are not exactly the NSF
ones due to the presence of error terms. That is to say, in general, the NSF equations
cannot be exactly recovered at such large temporal step and spatial size. In practice, if
the error terms are very small, GSIS-II can also approach the NSF limit in the continuum
flow regime. This will be demonstrated in Section 7.2.

In GSIS-II, in order to recover the NSF constitutive relations (2.13) exactly in gen-
eral cases, the velocity distribution function in the Taylor expansion to the first-order of
Knudsen number must be exactly recovered as

h(1)=− ∂h(0)

∂t0
−v· ∂h(0)

∂x
=−

[

2v〈ivj〉
∂u〈i
∂xj〉

+

(

v2− 5

2

)

vi
∂lnτ

∂xi

]

feq, (6.11)

where h(0) is given in Eq. (6.5), and the time derivative is changed to spatial derivatives
with the help of Eq. (6.10). This requires the following scaling

∆x∼Kn1/m2 , ∆t∼Kn1/m1 . (6.12)

Normally the kinetic equation is solved with second-order accuracy both in temporal and
spatial directions, that is, m1=m2=2. Therefore, the NSF equations are recovered in GSIS-
II with ∆x∼

√
Kn and ∆t∼

√
Kn, like the (discrete) unified gas-kinetic scheme [13,14,18].

The asymptotic paths of both GSIS-I and GSIS-II to the limiting hydrodynamic flow
regimes are summarized in Fig. 2. Such an analysis can also be done to the Boltzmann
equation. Finally, we also mention that in Ref. [14] the unified preserving (the asymptotic
preserving to higher-order macroscopic equations such as the Burnett, super-Burnett,
and Grad 13 (26) moments equations) property is proposed, but only some numerical
schemes asymptotically preserving the NSF equations are analyzed. We believe that
the GSIS-I scheme can be used to construct asymptotic preserving schemes to the Bur-
nett/Grad 13 level. However, this is not necessary in practice since the higher-order
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Figure 2: Schematic of the asymptotic path to the limiting hydrodynamic flow regimes. The NSF equations
are valid in the dark gray region, while the Burnett/Grad 13 moment equations are valid in the dark and light
gray regions. The region below the line ∆=O(Kn) suggests the resolved kinetic scale. The red solid line stands
for the maximum spatial grid size/time step to solve the NSF equations accurately using some discretization
method (certainly ∆ depends on the numerical method for the NSF equations and specific flow problems; in

some flows ∆ could be larger than O(1) because the time step can be proportional to Kn−1), below which GSIS-I
can capture the hydrodynamic behavior. GSIS-II works at a smaller value of ∆, say, beneath the dash-dotted
line ∆=O(Knn). Due to the instability at large time step, the validation range of HOLO is smaller than GSIS-II.

macroscopic equations are for flows with high Knudsen numbers [38,39], where the con-
ventional kinetic scheme can already find the solution quickly, using large temporal steps
and spatial cells.

7 Numerical results

In this section we present several numerical examples to assess the accuracy and effi-
ciency of both the GSIS schemes, as well as the HOLO.

7.1 Rayleigh-Brillouin scattering

The coherent Rayleigh-Brillouin scattering is a promising technique to probe the property
of gas, in which the wavelike density perturbation in gas is caused by a moving optical
lattice. We choose this problem because it is a zero-dimensional problem so any one can
quickly test/compare our and their methods.

Applying the Fourier transform in the scattering (say, x1) direction, the governing
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equation for the velocity distribution function h can be written as [4]

∂h

∂t
+2iπv1h=L(h)+2v1 cos(2π fst) feq, (7.1)

where fs is the frequency of the moving optical lattice; we choose fs =
√

5/6 (i.e., the
sound speed normalized by the most probable speed of gas molecules) so that the am-
plitude of perturbed density will scale as 1/Kn when the Knudsen number is small. If
the numerical scheme cannot preserve the NSF limit when Kn → 0, then a very small
time step is needed to keep a low numerical dissipation; otherwise the amplitude will be
much smaller than the converged solution.

Since the spatial derivative ∂/∂x1 is replaced by 2iπ in the Fourier transform, the
conservation equations (2.12) become

∂̺

∂t
+2iπu1=0,

2
∂u1

∂t
+2iπ(̺+τ+σ11)=2cos(2π fst),

3

2

∂τ

∂t
+2iπ(u1+q1)=0,

(7.2)

and the same transform is applied to the synthetic equations for stress and heat flux in
Eqs. (4.2), (4.3), (5.2), and (5.4).

In the numerical simulation, the molecular velocity space v is discretized by 6×6×6
Gauss-Hermite quadrature, which accurately resolves the velocity distribution function
when the Knudsen number is small: in the continuum flow regime the velocity distribu-
tion function contains v3

i , therefore, the integrand in the high order term in Eq. (5.4) has
the highest polynomial of v7

i , while the Gauss-Hermite quadrature of order 6 is accurate
for polynomial up to the order of 11. Starting from the zero initial values for the velocity
distribution function and macroscopic quantities, the synthetic equations are solved by
the Crank-Nicolson scheme, while the kinetic equation is solved by backward Euler and
Crank-Nicolson schemes, respectively. The inner iteration terminates when the relative
error in density between two consecutive steps are less than 10−10.

It should be noted that in HOLO, in order to make the mesoscopic and macroscopic
equations consistent, consistency terms are introduced to enslave the solution of syn-
thetic equations to that of the kinetic equation [22]. In this problem, since the spatial
derivative is handled exactly by the Fourier transform, and the molecular velocity space
is discretized by adequate quadrature, these consistency terms vanish. In GSIS, however,
we enslave the solution of kinetic equation to that of the synthetic equations, since the ki-
netic equation converges so slowly that false convergence might happen [33, 40]. That is,
when the inner iteration is converged (judged by the relative error in macroscopic quan-
tities), the velocity distribution function is updated to reflect the converged macroscopic



J. Zeng, W. Su and L. Wu / Commun. Comput. Phys., 34 (2023), pp. 173-207 191

98 98.5 99 99.5 100

time

-60

-50

-40

-30

-20

-10

0

10

20

Shakhov model

GSIS I: 2nd order

GSIS II: 2nd order

HOLO: 2nd order

HOLO: 1st order

GSIS II:1st order

GSIS I: 1st order

98 98.5 99 99.5 100

time

0

10

20

It
e

ra
ti
o

n
 n

u
m

b
e

r

98 98.5 99 99.5 100

Time

-60

-50

-40

-30

-20

-10

0

10

20

BGK model

98 98.5 99 99.5 100

Time

2

4

6

It
e

ra
ti
o

n
 n

u
m

b
e

r

Figure 3: The imaginary part of the density perturbation ̺ in the coherent Rayleigh-Brillouin scattering, when
the rarefaction parameter is δrp = 1000. Inset shows the iteration number, where the iteration is terminated

when the relative error in macroscopic quantities between two consecutive iterations is less than 10−10. The
kinetic equations are solved with a time step of ∆t=0.01, by the backward Euler method and Crank-Nicolson
scheme, respectively. The macroscopic synthetic equations are always solved by the Crank-Nicolson scheme
with the same time step.

quantities:

hk+1 =hk+1/2+
(

̺k+1−̺k+1/2
)

+2
(

uk+1−uk+1/2
)

·v

+
(

τk+1−τk+1/2
)(

v2− 3

2

)

. (7.3)

Numerical results of the GSIS and HOLO for coherent Rayleigh-Brillouin scattering is
shown in Fig. 3. From the figure we see that, when the kinetic equation is solved with
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second-order accuracy, GSIS-I, GSIS-II, and HOLO yield identical solutions. For the BGK
model, in each time step, CIS need around 200 inner iterations to find converged solu-
tions (not shown), while GSIS-I, GSIS-II, and HOLO needs about 5 iterations. This is
consistent with the Fourier stability analysis presented in Fig. 1, since the wavevector in
this problem is always unity. For the Shakhov model, GSIS-I still needs 5 iterations, while
GSIS-II and HOLO need about 20 iterations at each time step. This is because the former
has synthetic equation for the evolution of heat flux that appears in the gain term of the
kinetic model so that the error decay rate approaches zero when Kn→0, while the latter
has the error decay rate approaching 1/3.

We also find that, when the kinetic equation is solved with first-order temporal accu-
racy, both the GSIS schemes yield accurate solutions. However, HOLO exhibits visible
dissipation as the density amplitude is smaller. This is because the time step should be
no larger than O(Kn) for the first-order scheme, otherwise the artificial viscosity is com-
parable or larger than the physical viscosity, which leads to inaccurate solutions. It is
very interesting to note that, if we turn off the correction of velocity distribution function
in Eq. (7.3), both the GSIS schemes produce the same inaccurate result as HOLO. This
clearly demonstrates that we should enslave the solution of the kinetic equation to that
of the synthetic equations, while HOLO does the reverse way and get inaccurate results.

Finally, it should be noted that although GSIS-I allows a time step of O(1) to asymp-
totically preserve the NSF limit, here it is chosen as ∆t=0.01 because the NSF equations
cannot be accurately solved by a second-order scheme when the time step is larger than
0.01 in this specific problem.

7.2 Decay of two-dimensional Taylor vortex

To test the property of fast converging and asymptotic NSF preserving of GSIS and
HOLO with a time step ∆t ∼O(1), we consider the decay of two-dimensional incom-
pressible Taylor vortex within a periodic domain 0≤ x1,x2 ≤ 1. In the continuum flow
regime, the flow is governed by the incompressible Navier-Stokes equations and has the
following analytical solution:

u1(x1,x2,t)=−cos(2πx1)sin(2πx2)exp
(
−4π2t/δrp

)
,

u2(x1,x2,t)=sin(2πx1)cos(2πx2)exp
(
−4π2t/δrp

)
,

(7.4)

where the density and temperature are always zero. Therefore, the BGK model is used.

This is an ideal test case to assess the asymptotic NSF preserving property, since when
δrp is large (Kn is small), the Taylor vortex takes a long time to decay, so the time step can
be made very large if the numerical scheme for the kinetic system asymptotic preserves
the NSF equations.

Without loss of generality we choose δrp = 104, and in order to focus only on the
error in temporal discretization, we solve the kinetic equation and macroscopic synthetic
equations by the Fourier spectral method in the spatial directions, with the spatial grid
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Figure 4: Velocity profiles in the two-dimensional Taylor vortex flow at the time t=200, when the BGK model
with δrp = 10000 is solved by GSIS. The profiles with time step ∆t= 50 are shifted upward for clarity. DVM
1st (2nd) order means that the kinetic equation is solved with first (second) order temporal accuracy. Inset:
velocity contour at t=200.

size of ∆x = 1/16. The kinetic equation is solved by the backward Euler and Crank-
Nicolson schemes for the first- and second-order temporal accuracy, respectively, with
the initial condition

h(v,t=0)=2[v1u1(x1,x2,0)+v2u2(x1,x2,0)] feq, (7.5)

while the synthetic equations are solved by the second-order Crank-Nicolson scheme.
The molecular velocity space v is discretized by 6×6×6 Gauss-Hermite quadrature,
which is sufficiently accurate to evaluate the high order term in Eq. (5.2).

Numerical results are summarized in Fig. 4. When ∆t=1, both GSIS and HOLO yield
accurate results (not shown for clarity). However, when ∆t is increased to 10, HOLO be-
comes unstable, which is consistent with the result from the Fourier stability analysis in
Fig. 1 (note that in this case the wavevector is θ = 8π2). Both the GSIS schemes produce
stable results, and converged solution in each time step is found within 4 iterations even
when the time step is as large as ∆t=50. From the figure one can also find that when the
kinetic equation is solved with second-order temporal accuracy, accurate results are ob-
tained. However, when the kinetic equation is solved with first-order temporal accuracy,
GSIS-II generates inaccurate solutions when the time step is large, say, ∆t= 50. This is
because GSIS-II do not have the property of asymptotic NSF preserving at large temporal
step.
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To be specific, we find that in GSIS-II, when the streaming operator is treated exactly
by the Fourier spectral method, the first-order term in the Taylor expansion of velocity
distribution function is given by Eq. (6.7). Suppose ∆t∼O(1), it is estimated that the last
error term has a contribution to the shear viscosity at the order of

∆t

(
4π2

δrp

)m1+1

=

(

∆t
16π4

δrp

)

︸ ︷︷ ︸

O(1)

(
4π2

δrp

)m1−1
1

δrp
, (7.6)

where the underbraced term can be made O(1) since this is largest time step to get
the Navier-Stokes equation correct when solved by the second-order temporal scheme.
Therefore, when the kinetic equation is solved by the backward Euler scheme, we have
m1 = 1 and the error term is at the same order with the viscosity coefficient, hence the
GSIS-II is not accurate at large time step. However, when the kinetic equation is solved
by the second-order temporal accuracy, we have m1 = 2. Therefore, the error term is
much smaller than the viscosity coefficient when the Knudsen number is small. In this
case, GSIS-II can yield accurate NSF solutions even at large time steps, as observed in
Fig. 4.

7.3 Oscillatory Couette flow

Consider the oscillatory Couette flow between two parallel plates and investigate the
combined effect of spatial and temporal discretizations. The plate located at x1 =0 oscil-
lates in the x2 direction with the velocity

uwall =sin(2π fst), (7.7)

while the other plate at x1 = 1 is stationary. The rarefaction parameter is chosen to be
δrp = 1000, while the oscillation frequency is 2π fs = 0.1. This problem can be greatly
simplified. In fact, we have ρ=τ=0, and only the evolution equations for the velocity u2

and stress σ12 are needed.
The spatial coordinate x1 ∈ [0,1] is discretized non-uniformly with N points, in the

following manner

x1=
1

2
+

tanh(8m)

2tanh(4)
, j=

0,1,··· ,N−1

N−1
− 1

2
, (7.8)

so that the Knudsen layer can be well resolved. Later it will be shown this affects the
efficiency of inner iterations. The molecular velocity space v2×v3 is discretized by 6×6
Gauss-Hermite quadrature, while v1 is discretized non-uniformly:

v1 =
6

(Nv−1)3
(−Nv+1,−Nv+3,··· ,Nv−1)3, (7.9)

where Nv=32 is the total number of discretized velocity in the v1 direction.
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Figure 5: Velocity profiles in the oscillating Couette flow at the time t = 60, when the BGK model with
δrp =1000 is solved by the two GSIS schemes with different spatial resolutions, with the time step ∆t=1. The
reference solution is obtained from GSIS-I with N=121 and ∆t=0.1. Both kinetic and synthetic equations are
solved by the Crank-Nicolson scheme. Inset: the inner iteration number at each time step.

The kinetic equation is solved by the Crank-Nicolson scheme with second-order spa-
tial and temporal accuracy, with the initial condition h(x1,v,t = 0) = 0. The boundary
conditions are h(x1 = 0,v) = 2uwallv2 feq for v1 > 0 and h(x1 = 1,v) = 0 for v1 < 0. The
synthetic equations are solved by the second-order temporal accuracy, while the spatial
derivative is approximated by the central finite-difference with 5 stencils; hence in solv-
ing the synthetic equations j in Eq. (7.8) is taken from 2 to N−3, while the 4 left points,
obtained from the kinetic equation, provide boundary conditions to synthetic equations.

Numerical solutions of the oscillatory flow at δrp = 1000 are shown in Fig. 5 for dif-
ferent spatial resolutions. It is seen that when the number of spatial grid is decreased
from N = 121 to 61 and then to 21, the accuracy of GSIS-I barely reduces. However, in
GSIS-II when N = 21, large difference to the reference solution is observed. This is for
the GSIS-II the NSF equations can only be derived exactly when the spatial resolution is
about ∆x=O(

√
Kn)≈0.032. When N=121,61, and 21, the maximum grid size according

to Eq. (7.8) is 0.033, 0.066, and 0.190, respectively. The case of max(∆x)=0.190 is certainly
too large.

On the other hand, we find that, when the same spatial resolution is used, gener-
ally speaking, GSIS-I needs fewer iteration numbers than GSIS-II. When N is decreased,
the iteration number increases. This is because this flow is driven by the oscillation of
left plate; smaller value of N means coarser spatial grid size and hence the information
from the plate cannot be effectively passed to the bulk flow regime. Therefore, the use
of non-uniform spatial grid (7.8) not only allows the capture of flow dynamics around
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Figure 6: The error decay rate as a function of the rarefaction parameter in GSIS and HOLO. For wall bounded
problems such as the Poiseuille and Couette flows, the perturbation from the wall bears a wavevector of |θ|=δrp

if the Knudsen layer is resolved. Therefore, HOLO is only stable when the time step is small, while the robustness
of two GSISs is manifested at any time step.

the Knudsen layer (can be more clearly seen in Fig. 11 below), but also facilitates fast
convergence.

Note that the result of HOLO is not shown, since we find that it is not stable when
∆t>0.004. This can be understood as follows. When the Knudsen layer is resolved, the
oscillating plate will generate a perturbation with a wavelength at the order of mean free
path (see Fig. 11 below), that is, the wavevector is about

θ≈2πδrp. (7.10)

With this information, we re-calculate the error decay rate of GSIS-I, GSIS-II and HOLO
in Fig. 6 with θ=δrp. It is seen that GSIS is stable, while HOLO is unstable when ∆t>0.01
at δrp =1000. This is consistent with our numerical observations. If a coarse spatial grid
is used, the stability region of HOLO increases, however, the convergence speed is much
reduced.

We also assess the temporal accuracy of GSIS-I. It is seen from Fig. 7 that even when
the time step is much larger than the mean collision time of gas molecules, say, one sixth
of the oscillation frequency, the phase of the velocity is preserved after 10 oscillation
periods.
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Figure 7: Velocity profiles in the oscillating Couette flow at x1 = 0.15 and 0.5, when the BGK model with
δrp =1000 is solved by GSIS-I with ∆t=5 and 10, respectively. The reference solution is obtained from GSIS-I
with ∆t=0.1. Both kinetic and synthetic equations are solved by the Crank-Nicolson scheme, when the spatial
region is discretized by Eq. (7.8) with N=121.

7.4 Unsteady thermal creep flow in a closed channel

The thermal creep flow induced by a square inside a closed channel is computed to val-
idate the stability of current implicit scheme, based on the Rykov kinetic model [41, 42].
The schematic for the setting is shown in Fig. 8. The square, which is placed at a distance
of 2 away from the left wall, has dimensions h= 1, l = 1, and the temperature at the left
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(a) schematic (b) mesh

Figure 8: The schematic and mesh for thermal creep flow inside a closed channel. Due to symmetry, only the
top half region is simulated.

and right surfaces are Th=2 and Tc=1, respectively. The reference length is square width,
and the reference temperature is T0=300K. In contrast, the temperature of the horizontal
surfaces varies linearly. The channel has dimensions of H=2,L=5, and the temperature
is Tw =1. The working gas is nitrogen with the rotational degree of freedom dr =2. The
gas parameters are set as: the rotational collision number is Zr =2.6, the viscosity index
is ω = 0.74, the Schmidt number is δ= 1/1.33, and the Eucken factors are ft = 2.26 and
fr = 1.49, respectively. The initial gas temperature is T0 = Tc. The symmetry boundary
condition is imposed at y=0, while the Maxwellian diffusive boundary condition is im-
posed on other walls. The cases of Kn=1 and 5 are considered here. The spatial domain
is divided into 11250 triangles cells with more cells near the boundaries. The molecular
velocities are truncated in the regions of [−7,7]2, where v1 and v2 are discretized non-
uniformly, with 32 points in each direction.

Numerical simulations are carried out on different time steps to check the conver-
gence. The non-dimensional time steps in these cases are ∆t = 0.02,0.04,0.08, and the
reference time t0=l0/vm, where vm represents the most probable speed. The convergence
criterion for the inner iteration is that the relative change of macroscopic variables (den-
sity, velocity, and temperature) between adjacent steps is less than 10−6. It found that the
inner loop converges within 80 steps for all cases, and the dissipation increases slightly
as the time step increases.

We show the time evolution of the temperature contour in Fig. 9 to illustrate the capa-
bility of GSIS. The horizontal force of the square at different Knudsen numbers is given
in Fig. 10, which is calculated as

Fx =
∫

P ·n dS, (7.11)

where Pij =
∫

cicj f dξ is the pressure tensor, n and dS stand for the outward unit normal
vector and the area of the square faces, respectively. The evolution of horizontal force Fx

can be summarized as rapidly oscillating before dropping slowly to reach a stable value,
which agree well with the analytical solutions [43] at the free molecular regime. The peak
force can reach 128% of the steady-state value. Furthermore, the force trend at Kn=1 and
5 differs in the start-up phase, where the later trend is a monotonically increasing process.
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Figure 9: Density (left) and temperature (right) of the thermal creep flow with Kn=1 at different times. The
Rykov model equation is solved by GSIS-II. The time step is ∆t=0.02, and the temperature of the left surface
is Th =2.

8 GSIS for the Boltzmann equation

Finally, we propose the acceleration scheme for the Boltzmann equation and test their
performance. For the linearized Boltzmann equation, the GSIS-II is unchanged, since the
high-order terms in Eqs. (4.2) and (4.3) are universal. However, for the GSIS-I, the terms
in the right-hand side of Eqs. (5.2) and (5.4) are not accurate any more. Instead, they
should be modified as

∂σij

∂t
+2

∫

v〈ivj〉v·
∂h

∂x
dv−2

∂u<i

∂xj>
︸ ︷︷ ︸

HoTσij

+2
∂u<i

∂xj>
=−δrpσij

︸ ︷︷ ︸

Newton’s law

+δrpσij+2
∫

v〈ivj〉LBdv,
(8.1)



200 J. Zeng, W. Su and L. Wu / Commun. Comput. Phys., 34 (2023), pp. 173-207

0 5 10 15 20 25 30 35

0.075

0.080

0.085

0.090

0.095

0.100

Fx

Times

 Kn=1
 Kn=5

Figure 10: Horizontal force acting on the inner square at different Knudsen numbers with Th =2.

and

∂qi

∂t
+
∫ (

v2− 5

2

)

viv·
∂h

∂x
dv− 5

4

∂τ

∂xi
︸ ︷︷ ︸

HoTqi

+
5

4

∂τ

∂xi
=−2

3
δrpqi

︸ ︷︷ ︸

Fourier’s law

+
2

3
δrpqi+

∫ (

v2− 5

2

)

viLBdv. (8.2)

The numerical method will be the same as in the previous sections if the underlined terms
are absorbed into HoTσij

and HoTqi
correspondingly.

For the Boltzmann equation (2.1), the macroscopic synthetic equations (2.12) should
be replaced by the nonlinear conservative equations. Then, for GSIS-II, the constitutive
relations in Eqs. (4.2) and (4.3) to close these synthetic equations remain unchanged [35].
While for GSIS-I, the evolution equations for the stress and heat flux are the same as
Eqs. (8.1) and (8.2). Now we say that GSIS-II is quite universal, as the numerical scheme
is not affected by the detailed structure of the collision operator. Therefore, it may even
be directly applied to the direct simulation Monte Carlo (DSMC) methods for chemical
reactions. However, although GSIS-I has better properties than GSIS-II, it needs the de-
tailed information of collision operator, which may have problems in accelerating the
DSMC simulation for complicated gas mixtures or chemical reactions.

8.1 Linearized Couette flow

The configuration is the same as the oscillatory Couette flow in Section 7.3, except that
the velocity of the left wall does not change with time. The GSIS-I with a second-order
spatial-temporal accuracy is used. The spatial discretization follows Eq. (7.8) with N=51.
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Figure 11: (Top) The evolution of the velocity obtained from the linearized Boltzmann equation for Maxwell
gas (solid lines) and hard-sphere gas (squares). The GSIS-I is used with a time step being ∆t=0.1. Along the
arrow, the time is t=0.1, 0.5, 1, 5, 10, 50, and 100, respectively. Crosses: the GSIS-I with ∆t=1. Inset: the
iteration number when the relative error in u1 is less than 10−5. (Bottom) The Knudsen layer function (8.3).

The time step is ∆t= 0.1, since at early stage the maximum allowed time step is around
this value; if one is interested in the velocity profile after t≈ 5, then ∆t= 1 can be used,
see the crosses.

Fig. 11 depicts the evolution of flow velocity, where the perturbation gradually pene-
trates to the bulk region and then to the right wall. When δrp=100, it takes about t=100
to reach the steady-state solution, where the velocity profile is nearly linear. The GSIS-I is
efficient, since at each time step it can find the converged solution in about 15 iterations,
while that of the CIS is about 150.

It is interesting to see that there is no apparent difference in the velocity profiles of
the Maxwell gas and hard-sphere gas. Nevertheless, the difference can be seen in the
Knudsen layer, i.e., in the region within a few mean free path away from the solid wall.
To this end, we define the Knudsen layer function as

U(x1)=δrp[u2(x1)−uNS(x1)], (8.3)

where uNS is the linear velocity profile fitted from the numerical solution u2 only in the
bulk region. This function is shown in Fig. 11, from which we see that different molecu-
lar models, reflected in the viscosity index ω in Eq. (2.2), lead to different Knudsen layer
functions. On the contrary, the Shakhov model produces the same results for the Maxwell
and hard-sphere gases, that is, it cannot distinguish the influence of intermolecular po-
tential. This example demonstrates the necessity of using the Boltzmann equation when
one is interested in the fine flow structures.

8.2 Linearized lid-driven cavity flow

Now we consider the lid-driven cavity flow, where the gas flow encompassed in a squared
cavity and occupied the spatial domain [0,1]×[0,1] is driven by the top lid that is mov-
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Table 1: Total wall time cost at t=200, when the simulation is run on OpenMP 12 Intelr CoreTM i7-12700K
CPUs. ITRmax is the maximum # of steps for inner iteration, while ITRmin is the minimum # of steps for
inner iteration.

time step ITRmax ITRmin Wall time [h]

1 41 3 6.2

5 54 3 4.6

10 86 4 3.5

ing towards the x1 direction with a speed uw. The rarefaction parameter is chosen as
δrp=1000. The two-dimensional spatial domain is partitioned by a structured triangular
mesh with refined cell size near the boundaries. The details to partition the spatial do-
main can be found in Section 5.2. in Ref. [34]. Totally 512 triangles are used here with the
minimum and maximum cell sizes (the minimum height of a triangle) being about two
and ten times of the mean free path of gas molecules, respectively. The molecular velocity
space is truncated by [−6,6]3, where v1 and v2 are discretized by 32 non-uniform nodes
following Eq. (7.9) while v3 is discretized by 24 equidistant points. Assuming uw≪vm, the
Boltzmann equation is linearized to the form of Eq. (2.6) by choosing γ=uw/vm. To eval-
uate the linearized Boltzmann collision operator, the fast spectral method and 32×32×24
uniformly-distributed frequencies are employed.

The flow field is initialized by the global equilibrium distribution without bulk mo-
tions. The GSIS-I scheme is applied to calculate the flow properties at different times
when it approaches the steady state. The fourth-order discontinuous Galerkin methods
are used to approximate the spatial derivatives in the kinetic and synthetic equations,
the detailed formulations of which are presented in the Appendix in Ref. [34] together
with the implementation of the fully-diffuse boundary condition. In order to achieve the
optimal order of accuracy, the time-stepping method is required to have the same order
as the spatial discretization. To this end, the three-stage-fourth-order diagonally implicit
Runge-Kutta method is used [44, 45].

Fig. 12 illustrates the streamlines of the flow at different times, which are obtained
with ∆t = 1. The number of iteration steps to reduce the residue of flow density, tem-
perature and velocity to a level of 10−5 during the inner iteration is not larger than 40 at
any stage of the time marching scheme at each time step. We can see that a large eddy
rotating clockwise is first generated within the flow field, and two small eddies rotating
anti-clockwise appear later near the bottom corners of the cavity. As the time goes by, the
center of the large eddy moves downward while the two small eddies grow up. The flow
reaches the steady state approximately at t= 200. We further plot the horizontal (verti-
cal) velocities along the vertical line x1=0.5 (horizontal line x2=0.5) at different times in
Fig. 13. Results obtained by using different time steps ∆t=1, 5 and 10 are included. It is
found that the solutions from different time steps are identical except that the one using
∆t=10 is not accurate at the early times, say when t=10. The simulation time at different
time steps is shown in Table 1, which shows that the use of large time step is beneficial.
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Figure 12: Streamlines of the lid-driven cavity flow with δrp =1000 at different times: (a) t=5, (b) t=15, (c)
t=20, (d) t=40, (e) t=70, and (f) t=200. The linearized Boltzmann equation is solved by GSIS-I using a time
step of ∆t=1. Both the kinetic and the synthetic equations are approximated by the fourth-order discontinuous
Galerkin method for spatial derivatives and the diagonally implicit Runge-Kutta method for time stepping.

Figure 13: (a) Horizontal velocity u1 along the vertical line x1=0.5, (b) vertical velocity u2 along the horizontal
line x2=0.5 of the lid-driven cavity flow with δrp=1000 at different times. The linearized Boltzmann equation
is solved by GSIS-I using different time steps ∆t= 1, 5, and 10. The velocity is normalized by the lid velocity
uw.
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8.3 Decay of sinusoidal density wave

The nonlinear Boltzmann equation (2.1) is used to investigate the decay of sinusoidal
density wave. The initial conditions for macroscopic quantities are: the density is given
by 1+0.2sin(2πx1), u= 0, and the pressure is one, while the initial velocity distribution
function is given by the corresponding Maxwellian equilibrium one. Periodic boundary
conditions are applied. GSIS-II is considered, where the macroscopic synthetic equations
are obtained from the conservation of mass, momentum, and energy, and the constitutive
relations are given by Eqs. (4.2) and (4.3), with δ= δrp. This results in the conventional
NSF equations plus source terms. The NSF equations are solved by the finite difference
with the Roe-MUSCL scheme. Inner iterations converge in 3 iterations when ∆t=1 and
10. From Fig. 14 it is seen that even when the time step is about 10,000 larger than the
mean collision time, GSIS-II gets accurate solutions. However, when ∆t is increased to 10,
inaccurate solutions are obtained, this is because even the NSF equations are not accurate
to capture the decay dynamics at such a large time step.
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Figure 14: Density profiles at t=200 in the decay of standing wave, when the Boltzmann equation for hard-
sphere gas with δrp =5000

√
π is solved by GSIS-II with ∆t=1 (solid line) and 10 (circles), respectively. Both

kinetic and synthetic equations are solved by the Crank-Nicolson scheme with 100 equally-spaced spatial points.

9 Conclusions

We have proposed two general synthetic iterative schemes to solve the Boltzmann equa-
tion as well as the simplified kinetic model equations efficiently and accurately. First,
our rigorous Fourier stability analysis has shown that GSIS permits fast convergence in
the entire range of Knudsen number and time step. Second, the Chapman-Enskog ex-
pansion has been used to prove that, in the continuum flow regime, GSIS-I asymptoti-
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cally preserves the Navier-Stokes-Fourier equations when the spatial and temporal step
is ∆t,∆x∼O(1), provided that the NSF equations can capture the hydrodynamics at this
spatial grid size and temporal step. For GSIS-II, the spatial and temporal step should be
made smaller to recover the NSF equations exactly, e.g., ∆t,∆x∼O(

√
Kn) when the ki-

netic equation is solved by a second-order accuracy temporal and spatial scheme. Several
numerical examples have been used to demonstrate both important properties.

From the analytical and numerical results we conclude that, the gas kinetic equation
and its macroscopic synthetic equations can be coupled to construct a fast convergence
and asymptotic NSF preserving scheme for rarefied gas flows. And in order to construct
the GSIS-I scheme, it is necessary to reach at least the Grad 13 moment equations, where
the highest order velocity moments are calculated directly from the numerical solution of
kinetic equation. For other kinetic systems, say, radiative heat transfer, phonon dynamics,
we need the next-level moment system beyond the equations derived from conservation
laws. We plan to test this conjecture in other kinetic systems in the near future.
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