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The phonon Boltzmann transport equation with dual relaxation times is often used to 
describe the heat conduction in semiconductor materials when the classical Fourier’s law is 
no longer valid. For practical engineering designs, accurate and efficient numerical methods 
are highly demanded to solve the equation. At a large Knudsen number (i.e., the ratio of 
the phonon mean free path to a characteristic system length), steady-state solutions can 
be obtained via the conventional iterative scheme (CIS) within a few iterations. However, 
when the Knudsen number becomes small, i.e., when the phonon transport occurs in 
the diffusive or hydrodynamic regime, thousands of iterations are required to obtain 
converged results. In this work, a general synthetic iterative scheme (GSIS) is proposed 
to tackle the inefficiency of CIS. The key ingredient of the GSIS is that a set of macroscopic 
synthetic equations, which is exactly derived from the Boltzmann transport equation, is 
simultaneously solved with the kinetic equation to obtain the temperature and heat flux. 
During the iteration, the macroscopic quantities are used to evaluate the equilibria in 
the scattering terms of the kinetic equation, thus guiding the evolution of the phonon 
distribution function, while the distribution function, in turn, provides closures to the 
synthetic equations. The Fourier stability analysis is conducted to reveal the superiority 
of the GSIS over the CIS in terms of fast convergence in periodic systems. It is shown that 
the convergence rate of the GSIS can always be maintained under 0.2 so that only two 
iterations are required to reduce the iterative error by one order of magnitude. Numerical 
results in wall-bounded systems are presented to demonstrate further the efficiency of 
GSIS, where the CPU time is reduced by up to three orders of magnitude, especially in 
both the diffusive and hydrodynamic regimes where the Knudsen number is small.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of semiconductor technology, the characteristic size of microelectronic devices becomes 
smaller and smaller. Heat conduction at the micro-/nano-scales has attracted extensive attention [1–3], as it has vital appli-
cations in controlling the heat dissipation of electronic devices and developing thermal functional materials. Although the 
classical Fourier’s law has been guiding the study of heat conduction over the past centuries, it is no longer valid when 

* Corresponding authors.
E-mail addresses: wei.su@ed.ac.uk (W. Su), wul@sustech.edu.cn (L. Wu).
https://doi.org/10.1016/j.jcp.2022.111436
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111436
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111436&domain=pdf
mailto:wei.su@ed.ac.uk
mailto:wul@sustech.edu.cn
https://doi.org/10.1016/j.jcp.2022.111436


J. Liu, C. Zhang, H. Yuan et al. Journal of Computational Physics 467 (2022) 111436
the Knudsen number is not small, i.e., when the characteristic system length is comparable to or even smaller than the 
phonon mean free path [4,5]. A host of interesting phonon transport phenomena beyond the Fourier diffusion picture have 
been observed in micro-/nano-scale devices and materials [3,6,7]. For the mathematical description of such non-Fourier heat 
conduction, the phonon Boltzmann equation (PBE) should be adopted [8].

The PBE is an integro-differential equation defined in the phase space of seven dimensions [4,5], including the time t , 
the spatial coordinates x, the phonon angular frequency ω, and the solid angle �, which poses a grand research challenge 
to find its solution accurately and efficiently. Analogous to the kinetic models for rarefied gas flows, the relaxation-time 
approximation is introduced to simplify the scattering term in the PBE [8,9]. For example, the approximation of a single-
mode relaxation time [5] is commonly used to describe the resistive scattering (conserves energy but not momentum); 
it has been shown that this approximation can well predict the heat conduction in silicon and germanium. However, for 
materials in which the normal scattering (conserves both energy and momentum) plays a significant role [6,10–14], the 
single-relaxation-time model is not applicable. To circumvent this problem, Callaway proposed a model with dual relaxation 
times [15], which assumes that the normal scattering and resistive scattering are equally important and restore the phonon 
distribution to a displaced Planck distribution and a Planck distribution, respectively.

Two primary methods are commonly used to find solutions to the PBE and its model equations: derivation of macro-
scopic equations and direct numerical simulation. For the former one, Guyer and Krumhansl [16] first obtained the Guyer-
Krumhansl equations from the linearized PBE. Subsequently, macroscopic equations were derived via the Chapman-Enskog 
expansion [17] and the moment method [18–22]. These macroscopic equations are not valid in the whole range of Knudsen 
numbers: they are only accurate near the diffusive regime where the resistive scattering is strong, and the hydrodynamic 
regime where the resistive scattering is quite weak but the normal scattering plays an important role. For direct simulation, 
efficient and accurate numerical methods are needed. Because the kinetic equations are defined in the phase-space with 
high dimensionality, consequently, the discrete system may contain large numbers of degrees of freedom.

Many numerical methods including the Monte Carlo scheme [23–25], the lattice Boltzmann method [26], the discrete 
ordinate method [27,28], and the discrete unified gas kinetic scheme [29,30] have been developed. The Monte Carlo method 
is a stochastic approach; due to the fact that the advection and scattering of phonon are handled separately, the time step is 
required to be smaller than the smallest scattering time scale. As a result, the Monte Carlo method is expensive in the diffu-
sive and hydrodynamic regimes. Moreover, it suffers from large statistical errors due to its stochastic nature, especially when 
the temperature variation is small. To mitigate the latter problem, the variance-reduced Monte Carlo method was proposed, 
in which only the deviation from the equilibrium state is resolved [31]. However, it is still not efficient in the diffusive or 
hydrodynamic regime since the restriction on the time step is not removed. The standard lattice Boltzmann method, initially 
proposed for fluid dynamics [32], was extended to solve the PBE. Since it is developed on the near-equilibrium hypothesis, 
this method has difficulties in treating strong nonequilibrium effects and phonon spectral properties. Hence, it can only be 
adopted at small Knudsen numbers and is unsuitable for capturing the non-Fourier heat conduction. In the discrete ordinate 
method, the phonon frequency and angular variables are first discretized based on a numerical quadrature, resulting in a set 
of equations that are continuous in the spatial space and time; then, the classical numerical techniques are applied to ap-
proximate the spatial derivative and time integration. The discrete ordinate method is a deterministic approach which yields 
noise-free solutions. However, like the Monte Carlo method, it handles the advection and scattering operators separately; 
thus, it is also restricted by the requirement of time step and inefficient in small-Knudsen-number regimes. This problem is 
rectified in the discrete unified gas kinetic scheme, where the advection and scattering are coupled through a sophisticated 
construction of the numerical flux at spatial cell interfaces so that a large time step can be used.

Although significant progress in numerical simulations has been made in the past decades, the explicit marching strategy 
widely used in the existing schemes suffers difficulties when dealing with steady heat conduction problems [33–36]. For 
example, when the normal scattering is strong but the resistive scattering is weak, the temperature profile changes rapidly 
in the vicinity of boundaries, while in the bulk region, the temperature variation is small, see Fig. 5(b) in this work. For 
this case, a non-uniform spatial grid is necessarily used to reduce the number of spatial grid cells. However, due to the 
Courant–Friedrichs–Lewy (CFL) condition, the time step is usually limited by the smallest cell size; thus, a massive num-
ber of time steps is required to reach the steady state [4,5]. Consequently, implicit time-marching approaches are highly 
demanded. The conventional iterative scheme (CIS), based on the discrete ordinate method, is an implicit scheme, thus re-
moving the restriction from the CFL condition [33,37,38]. When it is adopted to solve the phonon transport equations, the 
time derivative is dropped, and the scattering operator is split into the gain and loss terms. The advection operator and loss 
term are calculated at the current iteration step, while the gain term is evaluated at the previous iteration step to avoid 
inverting a large matrix. The iteration terminates until time-independent solutions are achieved. When the Knudsen number 
is large, the CIS is efficient since the converged solution can be obtained within a few iterations [33,34,39]. However, the 
number of iterations increases dramatically when the Knudsen number becomes small because the error from iteration to 
iteration is hard to reduce. Therefore, it is necessary to develop a method to accelerate the convergence of CIS, especially 
in small-Knudsen-number regimes. This is particularly needed for simulating micro-/nano-scale heat conduction problems 
where multiscale transport is often encountered. For instance, heat is generated in a small source region and is eventually 
conducted to a much larger substrate [28].

If the normal scattering is absent, the PBE has the same form as that of the radiation transport equation, where in the 
diffusive regime, many acceleration methods have been developed, e.g., the diffusion synthetic iterative scheme [37,40]. 
The basic idea of the synthetic iterative scheme is that the kinetic equation and a set of macroscopic equations (the diffu-
2



J. Liu, C. Zhang, H. Yuan et al. Journal of Computational Physics 467 (2022) 111436
sion equation when only the resistive scattering is considered) are solved simultaneously: the mesoscopic kinetic equation 
provides high-order moments to the macroscopic equations, while the macroscopic equations provide the macroscopic 
quantities appearing in the scattering term. Since the diffusion equation allows very efficient exchanges of information, 
fast convergence is achieved [41]. When the Callaway model is considered, especially when the normal scattering is strong 
and the resistive scattering is relatively weak, the limiting equations are no longer the diffusion equation but the Guyer-
Krumhansl equations [16]. Therefore, a novel synthetic iterative scheme different from the one with only the resistive 
scattering is required. This is the main scope of the present work: to develop and analyze an efficient scheme for the 
Callaway model and simulate more general phonon transport problems. We name the new scheme the general synthetic 
iterative scheme (GSIS). The GSIS has been developed and successfully applied for rarefied gas flows. With the aid of the 
macroscopic equations that are accurate over the whole flow regime and asymptotically preserve the Navier-Stokes limit, 
the solutions to the Boltzmann equation for multiscale gas flows can be obtained within dozens of iterations. The GSIS has 
been developed for linear/nonlinear systems of monatomic and polyatomic gases [42–44], and has recently been extended 
for unsteady flows. This work is the first time the GSIS is developed for multiscale phonon transport problems. We will 
focus on steady-state problems. It is mentioning that the proposed algorithm is straightforwardly extendible for unsteady 
cases, where the time derivative in the governing equations will be retained and efficiently approximated by some implicit 
time-marching schemes. When obtaining the transient solution of the PBE from one time to another, the equation should 
be solved iteratively since the scattering term is not invertible. This is often called the inner iteration in a time-dependent 
implicit scheme. Then, the GSIS can be directly applied to accelerate the convergence of the inner iteration between two 
consecutive transient times.

The remainder of this paper is organized as follows: in section 2, the PEB combining Callaway’s dual-relaxation-time 
model is introduced. In section 3, the CIS for the Callaway model is described, and the GSIS to improve the CIS is proposed. 
The convergence rates of both schemes are rigorously analyzed by the Fourier stability analysis in periodic systems. In sec-
tion 4, three numerical examples in different phonon transport regimes are simulated to demonstrate the fast convergence 
of GSIS. Summaries and outlooks are given in section 5.

2. Phonon Boltzmann equation: the Callaway model

The heat conduction in semiconductor materials can be modeled as the flow of phonon gas carrying energies, which 
is described by the PBE for the evolution of phonon distribution function f . The modeling of phonon scattering is rather 
complicated, and here we consider a simplified version, i.e., the Callaway dual relaxation times model [15,45]:

∂ f

∂t
+ v · ∇x f = f R

eq − f

τR
+ f N

eq − f

τN
, (1)

where f (t, x, p, ω, s) is a function of the time t , the spatial coordinate x = (x1, x2, x3), the phonon polarization p, the 
angular frequency ω, and the unit vector along the direction of phonon propagation s = (cos θ, sin θ cosϕ, sin θ sinϕ) with 
θ ∈ [0, π ] being the polar angle between s and x1 axis, and ϕ ∈ [0, 2π ] being the azimuthal angle between the projection 
of s in the x2 − x3 plane and x2 axis. The phonon group velocity v = (v1, v2, v3) is defined as

v = ∇kω = |v|s. (2)

Here k is the wave vector, and the frequency ω can be determined from the dispersion relation ω = ωp(k). In this work, 
we adopt the isotropic hypothesis, i.e., the frequency only depends on the magnitude of the wave vector and is independent 
of its direction, and take the linear dispersion ω = c|k|, where c is the Debye velocity of the solid. τR and τN denote the 
relaxation times of the phonon resistive scattering and normal scattering, respectively. The gray-matter assumption that the 
relaxation times τR and τN are constant is employed. f R

eq is the local equilibrium distribution for the resistive scattering, 
following the Bose-Einstein distribution [46]

f R
eq = 1

exp
(

h̄ω
kB T

)
− 1

, (3)

while f N
eq is the local equilibrium distribution for the normal scattering, following the drifted Bose-Einstein distribution [15]

f N
eq = 1

exp
(

h̄ω−h̄k·u
kB T

)
− 1

, (4)

where h̄ is the reduced Planck’s constant, kB is the Boltzmann constant, T and u (related to heat flux q) are the macro-
scopic temperature and drift velocity, respectively. According to the energy conservation in both the resistive and normal 
scatterings and the momentum conservation in the normal scattering, the equilibrium distribution functions satisfy
3
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energy conservation:
∑

p

∫∫
h̄ω

f R
eq − f

τR
D p(ω)d�dω = 0,

∑
p

∫∫
h̄ω

f N
eq − f

τN
D p(ω)d�dω = 0,

momentum conservation:
∑

p

∫∫
h̄k

f N
eq − f

τN
D p(ω)d�dω = 0,

(5)

with D p(ω) being the phonon density of state.
Consider a phonon system in which the temperature variation around the reference temperature T0 is small; we expand 

f R
eq(T ) at T = T0 and f N

eq at T = T0 and u = 0 by Taylor’s theorem and retain only the first derivative. It becomes

f R
eq(T ) = f R

eq(T0) + ∂ f R
eq

∂T
(T − T0) , f N

eq(T , u) = f N
eq(T0,0) + ∂ f N

eq

∂T
(T − T0) + ∂ f N

eq

∂u
· u. (6)

On substituting Eq. (6) into Eq. (1) and introducing the quantity

e(t, x, p,ω, s) = h̄ω
D p(ω)

4π

[
f − f R

eq(T0)
]
, (7)

the PBE is linearized as

∂e

∂t
+ v · ∇xe = eR

eq − e

τR
+ eN

eq − e

τN
. (8)

The unknown e has the physical meaning of the perturbation of energy density, and the corresponding equilibrium distri-
butions for the resistive and normal scatterings read [35]

eR
eq = C v (T − T0)

4π
, eN

eq = C v (T − T0)

4π
+ C v T u · s

4π |v| , (9)

where Cv is the volumetric specific heat capacity defined as

C v = h̄ωD p(ω)
∂ f R

eq

∂T
= dE

dT
, (10)

with E being the phonon energy. Since the gray model with a single frequency is adopted, according to the conservation 
laws (5), the macroscopic variables are evaluated from the moments of e as

T = T0 + 1

C v

∫
ed�, u = 3

C v T

∫
ved�, q =

∫
ved�. (11)

Introducing the following dimensionless variables

x̃ = x

L
, ṽ = v

|v| , ũ = u

|v| , T̃ = T − T0

T0
, q̃ = q

C v |v|T0
,

ẽ = e

C v T0
, ẽR/N

eq = eR/N
eq

C v T0
, KnR = |v|τR

L
, KnN = |v|τN

L
,

(12)

Eq. (8) is nondimensionlized as

ṽ · ∇x̃ẽ = ẽR
eq − ẽ

KnR
+ ẽN

eq − ẽ

KnN
, (13)

where the dimensionless equilibria are

ẽR
eq = T̃

4π
, ẽN

eq = T̃

4π
+ 3q̃ · s

4π
, (14)

and the dimensionless macroscopic quantities are evaluated as

T̃ =
∫

ẽd�, ũ = 3
∫

ṽ ẽd�, q̃ =
∫

ṽ ẽd�. (15)

Note that in Eq. (13) the time derivative is dropped since we are interested in the steady-state solution. The two dimension-
less parameters KnR and KnN are the two important Knudsen numbers reflecting the regime of phonon transport dynamics 
and the properties of heat conduction. A map of four different phonon transport regimes is quantitatively described by 
different values of Knudsen numbers [16,47–49]:
4
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(a) Ballistic regime: KnR � 1, KnN � 1. The ballistic regime emerges when the characteristic length of the system is com-
parable to or smaller than the phonon mean free path. In this regime, the phonon transport is blocked by boundary 
scatterings so that the thermal conductivity decreases significantly as the system size shrinks [50,7].

(b) Diffusive regime: KnR � 1. The diffusive regime is the most commonly encountered regime, where the resistive scat-
tering is very strong. In this regime, Fourier’s law of heat conduction is valid.

(c) Hydrodynamic regime: KnN � 1 � KnR . The phonon hydrodynamic regime happens when the normal scattering domi-
nates the heat conduction, i.e., in extremely low temperature or low-dimensional materials. In this regime, the normal 
scattering is much stronger than the boundary scattering, while the boundary scattering is much stronger than the 
resistive scattering [3,51].

(d) Ziman regime: KnN < KnR < 1. In this regime, the resistive scattering is very strong, and the normal scattering is also 
not negligible.

In the following sections, the tilde symbol will be omitted without confusion.

3. Iterative schemes

3.1. Algorithms

The steady-state solution of Eq. (13) is usually solved by the CIS: given its value at the n-th iteration step, the distribution 
function at the next iteration step is resolved from

v · ∂en+1

∂x
= eR,n

eq − en+1

KnR
+ eN,n

eq − en+1

KnN
. (16)

In this work, the spatial derivative is approximated by the second-order upwind finite difference scheme (degrades to the 
first-order upwind scheme in the layer at boundaries) or the discontinuous Galerkin method. The equilibrium distribution 
functions eR,n

eq and eN,n
eq are calculated by the corresponding macroscopic quantities, say Mn = [T n, qn]� (the superscript 

‘�’ is the transpose operator), which are obtained from en at the n-th iteration step according to Eq. (15). The boundary 
condition is also determined from en if necessary. Once en+1 is obtained, we update the macroscopic quantities to Mn+1. 
The iteration terminates when the relative error in the macroscopic quantities between two consecutive iterations is less 
than a preassigned value. The CIS is efficient when KnR and KnN are not small, where the converged solutions can be 
obtained within a few iterations. However, the total number of iterations needed has a sharp increase when either KnR or 
KnN becomes small; because the propagation of information (e.g., temperature perturbation from the boundary) that relies 
on phonon propagation is inefficient when phonon suffers strong scattering.

To expedite the convergence, that is, to reduce the number of iteration steps, the GSIS is proposed. The critical ingredient 
in the GSIS is that macroscopic synthetic equations are simultaneously solved with the transport equation to guide the 
evolution of the macroscopic quantities and the distribution function. The synthetic equations are designed as follows. 
On multiplying Eq. (13) by 1, vi , vi v j , respectively, where i, j = 1, 2, 3 represent the three orthogonal directions of the 
Cartesian coordinates and integrating the resultant equations with respect to the solid angle �, we obtain the following 
moment equations for temperature and heat flux (the Einstein summation convention is used)

∂qk

∂xk
= 0, (17)

1

3

∂T

∂xi
+ ∂N〈ik〉

∂xk
= − 1

KnR
qi, (18)

2

5

∂q〈i

∂x j〉
+ ∂M〈i jk〉

∂xk
= − 1

KnC
N〈i j〉, (19)

where Kn−1
C = Kn−1

R + Kn−1
N is the overall Knudsen number and

∂q〈i

∂x j〉
= 1

2

∂qi

∂x j
+ 1

2

∂q j

∂xi
− 1

3

∂qk

∂xk
δi j, (20)

with δ being the Kronecker function. The definition of the moments N〈ik〉 and M〈i jk〉 reads

N〈ik〉 =
∫ (

vi vk − 1

3
δik

)
ed�, (21)

M〈i jk〉 =
∫

vi v j vked� − 1

5

∫
(viδ jk + v jδik + vkδi j)ed�, (22)

which are symmetry and trace-free tensors [20]. Note that on deriving Eqs. (17) and (18), the fact that energy is conserved 
in both the normal and resistive scatterings and momentum is conserved in normal scattering has been applied.
5
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The moment equations are not closed because the equation (19) for N〈i j〉 contains the high-order moment M〈i jk〉 that 
is unknown in terms of lower-order moments. Fryer and Struchtrup [20] closed the equations by Grad’s moment method, 
where the distribution function is truncated and approximated by a limited number of moments based on the principle 
of maximum entropy. If T , qi and N〈i j〉 are chosen as the variables in the moment system, M〈i jk〉 vanishes, and the above 
momentum equations are reduced to the Guyer-Krumhansl equations. If M〈i jk〉 is also considered as the variables, additional 
constitutive relation is formulated for M〈i jk〉 , resulting in the 16-Moment equations. With the truncation on the high-order 
moments, the Grad’s moment equations are only valid in regimes of modest Knudsen numbers. In this work, since we are 
considering phonon transport over the whole range of Knudsen numbers, we close the equations (17)-(19) by calculating 
M〈i jk〉 with respect to its definition (22), using the solution of the distribution function from the Boltzmann equation. In this 
way, all the ballistic effects are included in M〈i jk〉 , and no truncation is introduced. Details of implementation are described 
below.

After obtaining the macroscopic synthetic equations, we elaborate on the procedure of the GSIS. Given the distribution 
function en and the macroscopic quantities Mn at the n-th iteration step, their values at the (n + 1)-th step are updated as 
follows:

1. An intermediate solution of the distribution function at (n + 1/2)-th step is first obtained by solving the phonon trans-
port equation

v · ∂en+1/2

∂x
= eR,n

eq − en+1/2

KnR
+ eN,n

eq − en+1/2

KnN
, (23)

where the equilibrium eR,n
eq and eN,n

eq are evaluated from Mn and the boundary condition is determined based on en;

2. The intermediate en+1/2 is then used to evaluate the high-order moment Mn+1/2
〈i jk〉 and the macroscopic quantities Mn+1/2

at boundaries according to Eqs. (22) and (15);
3. Provided with the high-order moment and boundary condition, the macroscopic quantities Mn+1 are resolved from the 

synthetic equations

∂qn+1
k

∂xk
= 0,

1

3

∂T n+1

∂xi
+ 1

KnR
qn+1

i + ∂Nn+1
〈ik〉

∂xk
= 0,

1

KnC
Nn+1

〈i j〉 + 2

5

∂qn+1
〈i

∂x j〉
= −∂Mn+1/2

〈i jk〉
∂xk

,

(24)

which will be further used to calculate the equilibrium distributions in Eq. (23) in the next round of iteration;
4. The distribution function is simply updated as en+1 = en+1/2.

The above steps are repeated until the difference between Mn and Mn+1 is less than a small value. In this way, the GSIS 
can achieve fast convergence. This is mainly due to the fact that information propagation now depends on the evolution 
of macroscopic quantities, where the macroscopic synthetic equations directly pull the solution towards the steady state; 
consequently, the intermediate evolution through phonon propagation is averted hence the scheme is very efficient. The 
implementations of both the CIS and GSIS are sketched in Fig. 1.

3.2. Fourier stability analysis

In this section, we adopt the Fourier stability analysis to rigorously calculate the convergence rates of both the CIS and 
GSIS in systems with periodic boundary conditions, that is, to see how fast the error decays as the iteration is carried 
forward.

We first consider the CIS and define the error function between the distribution functions at two consecutive iterations 
as [52]

Y n+1(x, s) = en+1(x, s) − en(x, s), (25)

and the error functions for the macroscopic quantities M = [T , q]� between two consecutive iteration steps as

�n+1
M (x) ≡

[

n+1

T (x),�n+1
q (x)

]�

= Mn+1(x) − Mn(x) =
∫

Y n+1(x, s)φ(v)d�,

(26)
6
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Fig. 1. Schematic of procedures for CIS and GSIS. Generally, both schemes follow similar solution routines. The major difference lies in the way to update 
macro quantities. In CIS, the macro quantities at the new iteration step are calculated by taking moments of the distribution function. In GSIS, the macro 
quantities are obtained by solving the macroscopic synthetic equations.

where φ(v) = [1, v]. On substituting Eqs. (25) and (26) into Eq. (16), it is found that Y n+1(x, s) satisfies

v · ∇Y n+1 + 1

KnC
Y n+1 = 1

4π KnC

n

T + 3

4π KnN
v · �n

q. (27)

To determine the convergence rate, we perform the Fourier stability analysis and express the error functions as

Y n+1(x, s) = yn+1(s)exp(iθ · x), (28)

�n+1
M (x) = αn+1

M exp(iθ · x), (29)

where θ = (θ1, θ2, θ3) is the wavevector of perturbation, i is the imaginary unit, and yn+1 and αn+1
M =

[
αn+1

T ,αn+1
q

]�
are 

the Fourier expansion coefficients. Substituting Eq. (28) and (29) into Eq. (27), we obtain the relation between y and αM as

(1 + iKnC v · θ) yn+1 = 1

4π
αn

T + 3KnC

4π KnN
v · αn

q. (30)

Note that we only consider the single Fourier mode exp(iθ · x) because Eq. (27) is a linear system, and all the other modes 
independently follow the same relation of (30). For simplificity, we consider general two-dimensional problem and set 
θ3 = 0 without losing essential properties of the error evolution. We further constrain that |θ |2 = θ2

1 + θ2
2 = 1. Although the 

actual perturbation may have various values of |θ |, from Eq. (30) we can see that yn+1 depends on θ through the product 
KnC θ . For cases |θ | 
= 1, the convergence rate can be obtained by replacing KnC with KnC |θ | and keeping the ratio KnC /KnN
unchanged.

On introducing Eqs. (28), (29) and (30) into Eq. (26), we have

αn+1
M = Cαn

M , (31)

where the 3 × 3 matrix C is

C =
⎡
⎣ c1

∫
y′d� c2

∫
v1 y′d� c2

∫
v2 y′d�

c1
∫

v1 y′d� c2
∫

v2
1 y′d� c2

∫
v1v2 y′d�

c1
∫

v2 y′d� c2
∫

v1 v2 y′d� c2
∫

v2
2 y′d�

⎤
⎦ , (32)

with

c1 = 1
, c2 = 3KnC

, y′ = 1
. (33)
4π 4π KnN 1 + iKnC v · θ
7
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Eq. (31) allows us to determine the errors of the macroscopic quantities recursively

�n+1
M = C�n

M = · · · = Cn�1
M . (34)

Given an initial guess of the macroscopic quantities M 0, this yields the estimation

‖�n+1
M ‖

‖�1
M‖ = ‖Mn+1 − Mn‖

‖M1 − M0‖ ≤ ‖Cn‖ � ρn. (35)

ρ is the magnitude of the largest eigenvalue of the matrix C, i.e., the convergence rate. Eq. (35) implies: when ρ > 1, the 
iteration is unstable; when ρ < 1 the iteration converges, however the convergence is very slow if ρ � 1; and the iteration 
can efficiently suppress the error when ρ � 0.

The convergence rate ρ can be obtained by numerically computing the eigenvalues of the matrix C and taking the 
maximum absolute value. The results as a function of KnR and KnN are shown in the left plot of Fig. 2. It is clear that when 
both KnR and KnN are large, ρ goes to zero so that the error decays quickly. That is, the CIS is quite efficient in the ballistic 
regime. However, when either KnR or KnN is small, the convergence rate ρ is close to 1, which indicates that the CIS works 
inefficiently such that it requires large numbers of iteration steps for convergence in the diffusive, hydrodynamic, and Ziman 
regimes.

To evaluate the convergence rate of the GSIS, the error function for the distribution function is modified as

Y n+1/2(x, s) = en+1/2(x, s) − en(x, s) = yn+1/2(s)exp(iθ · x). (36)

According to Eq. (23), yn+1/2 has the same solution (30) as that for yn+1 in the CIS. The error functions of the macroscopic 
quantities are still defined as �n+1

M = Mn+1 − Mn . However, unlike the CIS where �n+1
M are directly calculated as the 

integrals of the error function for the distribution function, in the GSIS they are obtained from the macroscopic synthetic 
equations (24), in which T n+1 and qn+1 are replaced by 
n+1

T and �n+1
q , Nn+1

〈i j〉 are replaced by


n+1
N〈i j〉 ≡ Nn+1

〈i j〉 − Nn
〈i j〉 = αn+1

N〈i j〉 exp(iθ · x), (37)

and M〈i jk〉 are replaced by



n+1/2
M〈i jk〉 ≡

∫
vi v j vkY n+1/2d� − 1

5

∫
(viδ jk + v jδik + vkδi j)Y n+1/2d�, (38)

because only the highest-order moment M〈i jk〉 is calculated from the distribution function when solving the synthetic equa-
tions. After some simple algebraic calculates we have

iθkα
n+1
qk

=0,

1

3
iθiα

n+1
T + 1

KnR
αn+1

qi
+ iθkα

n+1
N〈ik〉 =0,

1

KnC
αn+1

N〈i j〉 + 1

5
iθ jα

n+1
qi

+ 1

5
iθiα

n+1
q j

= − iθk

∫
vi v j vk yn+1/2d�

+ 1

5
iθk

∫
(viδ jk + v jδik + vkδi j)yn+1/2d�.

(39)

On eliminating αn+1
N〈i j〉 and replacing yn+1/2 by its solution (30), we eventually obtain the following 3 × 3 linear systems for 

general two-dimensional problems

Lαn+1
M = Rαn

M , (40)

where

L =
⎛
⎜⎝

0 iθ1 iθ2

1
3iθ1

2KnC
5 θ2

1 + KnC
5 θ2

2 + 1
KnR

KnC
5 θ1θ2

1
3iθ2

KnC
5 θ1θ2

KnC
5 θ2

1 + 2KnC
5 θ2

2 + 1
KnR

⎞
⎟⎠ ,

R =
⎛
⎜⎝

0 0 0

c1
∫

s1 y′d� c2
∫

v1s1 y′d� c2
∫

v2s1 y′d�

c1
∫

s2 y′d� c2
∫

v1s2 y′d� c2
∫

v2s2 y′d�

⎞
⎟⎠ ,

(41)

with
8
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Fig. 2. The contours of convergence rate ρ as a function of the Knudsen numbers KnR and KnN (in logarithmic scales) from 10−3 to 103 for both the 
CIS (Left) and the GSIS (Right). The results are obtained considering general two-dimensional problems when the wavevector of perturbations is set as 
θ = (1/

√
2, 1/

√
2).

Fig. 3. Schematics of (a) quasi-one-dimensional heat conduction in an infinitely thin sheet with a length L induced by the different temperatures of the left 
and right boundaries; (b) quasi-one-dimensional heat conduction in an infinitely long film with a height H induced by a constant temperature gradient in 
its longitudinal direction. The boundaries in the transverse direction are adiabatic.

s1 = −KnC

[
θ2

1

(
v2

1 − 2

5

)
v1 + θ1θ2 v2

1 v2 + θ1θ2

(
v2

1 − 1

5

)
v2 + θ2

2

(
v2

2 − 1

5

)
v1

]
,

s2 = −KnC

[
θ2

1

(
v2

1 − 1

5

)
v2 + θ1θ2

(
v2

2 − 1

5

)
v1 + θ1θ2 v1 v2

2 + θ2
2

(
v2

2 − 2

5

)
v2

]
.

(42)

Consequently, the convergence rate of the GSIS is calculated as the maximum magnitude of the eigenvalues of the matrix 
L−1R. The results are shown in the right plot of Fig. 2. It is clearly illustrated that compared to the CIS, the GSIS greatly 
improves the iteration efficiency especially in regimes of small values of KnR and KnN . The convergence rate can always 
be maintained under 0.2, which means that only two iterations are required to reduce the iterative error by one order of 
magnitude.

Note that in Fig. 2, the convergence rates are obtained when (θ1, θ2) =
(

1/
√

2,1/
√

2
)

. Different values of θ1 and θ2 make 
no difference in the results since the convergence property depends on the values of Knudsen numbers, i.e., it is determined 
by the wavelength of error mode but not the direction.

4. Numerical tests

In this section, we numerically demonstrate the performance of GSIS and CIS in three confined systems that can be 
treated as prototypes for real engineering applications.

4.1. Quasi-one-dimensional heat conduction across an infinitely thin sheet

The quasi-one-dimensional heat conduction across an infinitely thin sheet of a characteristic length L = 1, as shown in 
Fig. 3(a), is simulated by both the CIS and the GSIS. The simulation domain is set as x1 ∈ [0, 1]. Temperatures deviated from 
the reference temperature on the left and right boundaries are T H = 1/2 and TC = −1/2, respectively. The thermalization 
boundary condition is adopted for the distribution function of phonon interacting with the isothermal surface, where a 
9



phonon is absorbed as it strikes the boundary, and a new phonon in the equilibrium state with the boundary temperature 
is emitted into the computational domain. Therefore, the distributions of the phonon reflected from the boundaries are

e(x1 = 0, v1 > 0) = T H

4π
, e(x1 = 1, v1 < 0) = TC

4π
. (43)

For this one-dimensional case, the moment equations can be simplified to ∂q1/∂x1 = 0, i.e., the heat flux is a constant, 
while the temperature satisfies

KnR

3

∂T

∂x1
− KnC KnR

∂2

∂x2
1

M111 = −q1. (44)

On integrating Eq. (44) with respect to x1 over the domain and considering the symmetry around x1 = 1/2, we obtain the 
solution at the (n + 1)-th step as

T n+1 = 3

KnR
qn+1

1

(
1

2
− x1

)
+ 3KnC

∂Mn+1/2
111

∂x1
. (45)

The constant heat flux is calculated from the temperature and high-order moment at the boundary as

qn+1
1 = 2KnR

3
T n+1/2

∣∣∣∣
x1=0

− 2KnC KnR
∂Mn+1/2

111

∂x1

∣∣∣∣
x1=0

, (46)

where T n+1/2|x1=0 is the temperature at the boundary that are evaluated from the distribution function en+1/2.
For numerical simulation, the spatial domain is discretized by the following non-uniform grid nodes

xd
1 = d3

(
10 − 15d + 6d2

)
, d = (0,1, ..., Nx − 1)/(Nx − 1), (47)

and totally Nx = 101 are used. The spatial derivatives in the governing equations are approximated by the second-order 
finite difference method. The Gauss-Legendre quadrature is adopted for the numerical integration with respect to the solid 
angle � and 60 discrete points are used in the polar angle, i.e., Nθ = 60. The iteration is assumed to converge when

ε =
1∫

0

|T n+1 − T n|dx1 < 1.0 × 10−7. (48)

To illustrate the convergence properties of the CIS and GSIS, we compare the convergence histories of the two schemes 
in terms of the intermediate temperature profiles at selected iteration steps. The results when KnR = 10−2 and KnN = 105, 
i.e., the phonon transport belongs to the diffusive regime, are plotted in Fig. 4(a) and (c). In the CIS, starting from the initial 
condition T = 0, the heat flux from the boundaries quickly changes the temperature locally (within about one phonon 
mean free path away from the boundaries); however, due to the frequent resistive scattering, it takes a large number of 
iteration steps for the perturbation to propagate into the bulk region. For example, from Fig. 4(a) we see that about 500
iteration steps are consumed for the temperature at x = 0.5 to feel this change; then, it costs additional 2000 steps to adjust 
the temperature towards the final linear profile. Such a slow convergence is completely changed in the GSIS, where the 
temperature is updated according to the macroscopic equations (44), in which the dominated part is ∂T /∂x1 = −3q1/KnR

when KnR is small and KnN is large. This implies that the temperature in the bulk region can be immediately corrected 
to be nearly linear, which is the major reason for the fast convergence of the GSIS. As we can see from Fig. 4(c), the 
temperature in the bulk region has perceived the perturbation from the boundaries just after 1 iteration, and varies linearly 
as the computation continues.

Now we consider the convergence property for the phonon transport in the hydrodynamic regime with KnR = 105 and 
KnN = 10−3. Due to the non-negligible effect of high-order moments, the steady-state temperature has a profile that varies 
significantly near the boundaries but has almost zero value in the bulk region. The results from the CIS are plotted in 
Fig. 4(b). It is found that as the iteration processes, the perturbation from the boundaries first propagates into the bulk 
region, e.g., during the first 900 steps; then the effect from the high-order moments gradually manifests, and it slowly 
regulates the temperature in the bulk region to the final state, which cost other several thousands of steps. The results 
from the GSIS are illustrated in Fig. 4(d), where the slow convergence, again, is changed. It is interesting to note that the 
temperature is immediately adjusted in the bulk region after 1 iteration, just as that found in the previous case; this is due 
to the fact that the high-order terms are explicitly evaluated from the first solution of the distribution function, which is 
very close to zero, especially in the bulk region; in other words, during (but only during) the first iteration, the macroscopic 
equations behave like the diffusion equation. However, after then, the high-order moment quickly becomes effective, and 
the temperature reaches the steady state within several iterations. Therefore, with the help of the macroscopic synthetic 
equations that allow a very efficient exchange of information, the GSIS realizes fast convergence in the whole computational 
domain.
J. Liu, C. Zhang, H. Yuan et al. Journal of Computational Physics 467 (2022) 111436
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Fig. 4. Immediate temperature profiles of quasi-one-dimensional heat conduction in an infinitely thin sheet at different iteration steps obtained from CIS 
(a, b) and GSIS (c, d). In (a, c) KnR = 10−2, KnN = 105, and in (b, d) KnR = 105, KnN = 10−3.

Fig. 5. Steady-state temperature profiles of quasi-one-dimensional heat conduction across an infinitely thin sheet. (a) Diffusive regime: KnN = 105, KnR =
0.1, 0.01; (b) phonon hydrodynamic regime: KnR = 105, KnN = 0.1, 0.01; (c) Ziman regime: KnR = KnN = 0.1, KnR = KnN = 0.01; (d) ballistic regime: 
KnR = KnN = 1, KnR = KnN = 10, KnR = KnN = 105.
11
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Table 1
Numbers of iteration steps cost by CIS and GSIS for converged solutions [Eq. (48)] for quasi-one-
dimensional heat conduction across an infinitely thin sheet.

KnR 10 1 0.1 0.01 105 105 105 105 105 0.01
KnN 105 105 105 105 10 1 0.1 0.01 0.001 0.01

CIS 4 9 83 2547 5 13 69 608 7015 4025
GSIS 5 8 17 19 6 11 14 15 16 19

Table 2
Numbers of iteration steps n cost by CIS and GSIS for converged solutions [Eq. (51)] for quasi-one-
dimensional heat conduction in an infinitely long film. The iteration step of CIS in the last column 
is not shown, but it can be deduced that the number is over 1 million.

KnR 10 1 0.1 0.01 105 105 105 105 105

KnN 105 105 105 105 10 1 0.1 0.01 0.001

CIS 81 22 37 43 87 64 892 54614 -
GSIS 81 22 32 30 8 39 35 60 68

Fig. 5 shows the temperatures predicted by the two schemes under various combinations of KnR and KnN . Results from 
the GSIS are in good agreement with the analytical solutions [45]; therefore the accuracy of the GSIS is validated. Note that 
as a fine enough spatial grid is used, the CIS results are considered accurate. We record the total numbers of iterations 
needed for the convergence of the schemes in Table 1. It is found that the iteration numbers are significantly reduced by 
the GSIS when either of the Knudsen numbers is small. When both the Knudsen numbers are large, the two schemes cost 
almost the same number of iterations, and both are efficient.

4.2. Quasi-one-dimensional heat conduction in an infinitely long film

In this section, we consider a quasi-one-dimensional heat transport in an infinitely long film having a characteristic 
height of H = 1, see Fig. 3(b). The simulation domain is (x1, x2) ∈ [−0.5, 0.5]2. The periodic heat flux boundary condition 
is applied on both the left-hand and right-hand ends to preserve a constant temperature gradient along the longitudinal 
direction, while the other two boundaries are adiabatic. This implementation of boundary conditions can model the heat 
transport in an infinitely long sample and avoid a large number of spatial grid cells along the longitudinal direction [53,41]. 
The distribution functions at the left and right boundaries are given as

e(x1 = −0.5, x2, v1 > 0) = �T

4π
+ e(x1 = −0.5, x2, v1 > 0),

e(x1 = 0.5, x2, v1 < 0) = −�T

4π
+ e(x1 = 0.5, x2, v1 < 0),

(49)

where �T = 1 is the temperature difference between the two ends. Two kinds of numerical treatments are available for the 
adiabatic boundary: the specular scheme and the diffuse scheme. Due to material roughness, the diffuse scheme is often 
a better approximation, which assumes that the direction of the phonon leaving the boundary is independent of that of 
the incident phonon. We adopt the non-thermalizing diffuse scheme for the bottom and top boundaries to ensure accurate 
energy conservation [53]

e(x1, x2 = −0.5, v2 > 0) = −
∫

v2<0 e(x1, x2 = −0.5)v2d�∫
v2>0 v2d�

,

e(x1, x2 = 0.5, v2 < 0) = −
∫

v2>0 e(x1, x2 = 0.5)v2d�∫
v2<0 v2d�

.

(50)

For simulations, Nx1 = 3 equidistant spatial nodes are used for the x1-direction, and Nx2 = 101 non-uniform nodes deter-
mined by Eq. (47) are employed in the x2-direction. An angular resolution of Nθ = 24, Nϕ = 24 is adopted. The convergence 
criterion is

ε =
0.5∫

−0.5

|T n+1(x1 = 0, x2) − T n(x1 = 0, x2)|dx2 < 1.0 × 10−7. (51)

Fig. 6 shows the steady-state heat fluxes along the x2 direction in the diffusive and hydrodynamic regimes obtained 
by both the CIS and GSIS under different combinations of Knudsen numbers. Again, the two schemes predict almost the 
same results. The numbers of iteration steps are listed in Table 2 for both the schemes. For all the cases when either KnR
12



J. Liu, C. Zhang, H. Yuan et al. Journal of Computational Physics 467 (2022) 111436
Fig. 6. Steady-state heat fluxes along the transverse direction of quasi-one-dimensional heat condition in an infinitely long film. (left) In the diffusive regime 
with KnN = 105 and different KnR = 10, 1, 0.1, 0.01; (right) in the hydrodynamic regime with KnR = 105 and different KnN = 10, 1, 0.1, 0.01.

Fig. 7. Quasi-two-dimensional heat conduction in square domain. (a) Triangular mesh used to partition the domain. Temperature contours: (b) KnR = 0.01, 
KnN = 105, (c) KnR = 0.1, KnN = 105, (d) KnR = 1, KnN = 1, (e) KnR = 10, KnN = 0.01 and (f) KnR = 0.001, KnN = 105, where the right half domain in each 
subplot illustrates the result obtained from GSIS. In (b)-(e), the left half domain shows the result obtained from CIS. The left domain in (f) is the analytical 
solution obeying Fourier’s conduction law.

or KnN is small, the GSIS costs much fewer iterations to obtain the steady-state solutions. For example, when KnN = 0.01
and KnR = 105, the total iteration number for the CIS is 54614, while the GSIS only takes 60 iteration steps thus the total 
number of iterations is nearly reduced by 3 orders of magnitude in the GSIS.

4.3. Quasi-two-dimensional heat conduction in a square domain

Now we consider the quasi-two-dimensional heat conduction within a square domain of dimensions [0, 1] × [0, 1]. The 
upper boundary of the square is maintained at a higher temperature T H = 1, and that of the other three boundaries is 
TC = 0. We first consider four groups of Knudsen numbers to compare the temperature contours obtained from the GSIS 
and CIS: KnR = 0.01, KnN = 105; KnR = 0.1, KnN = 105; KnR = 1, KnN = 1; and KnR = 10, KnN = 0.01. The problem is 
simulated on the triangular mesh as illustrated in Fig. 7. The mesh is generated in the following way: firstly, 10 seeds are 
distributed along the x1 and x2 directions according to Eq. (47) to partition the domain into 10 × 10 rectangles; then, each 
rectangle is split into two uniform triangles by connecting one pair of its across corners. This results in a mesh with totally 
200 triangles and the maximum (minimum) cell size, i.e., the triangular height is about 0.13 (6.1 × 10−3). The 4th-order 
discontinuous Galerkin (DG) finite element method is employed to discretize the kinetic equation as well as the moment 
equations in the spatial space. The DG method that was first introduced to solve the steady neutron transport equation has 
been successfully applied for simulating phonon transport problems [54]. The detailed DG formulations can be found in the 
13
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Table 3
Numbers of iteration steps n and CPU time cost by GSIS and CIS for converged solutions [Eq. (52)] 
for quasi-two-dimensional condition problem under different combinations of KnR and KnN . Nel is the 
number of triangles of spatial meshes, Nθ and Nϕ are the numbers of discrete points for angular resolu-
tions. CPU time is counted by running each case on a single Intel Xeon-E5-2680 processor. The iteration 
step and CPU time of CIS for the case of KnR = 0.001 and KnN = 105 are not shown, but it can be 
deduced that the number of steps is over 1 million and the CPU time is more than 60 hours.

case Nel Nθ Nϕ GSIS CIS

KnR KnN n CPU time [s] n CPU time [s]

0.001 105 200 20 40 43 23.6 - -
0.01 105 200 40 80 24 54.2 13234 28938.5
0.1 105 200 40 80 26 59.3 269 587.2
1 1 200 80 160 28 260.4 29 255.5
10 0.01 200 40 80 47 106.9 1883 4112.2

Appendix. An angular resolution of Nθ = 40 and Nϕ = 80 is adopted, except for the case of KnR = 1, KnN = 1 where we set 
Nθ = 80 and Nϕ = 160 to get a smooth solution. For all the calculations, both the GSIS and CIS iterations are terminated 
when

ε =
√∫ |T n+1 − T n|2dx1dx2∫ |T n|2dx1dx2

< 1.0 × 10−7. (52)

For the GSIS, the macroscopic quantities at the (n + 1)-th step are updated as

Mn+1 = βM∗ + (1 − β) Me, (53)

where M∗ denotes the solution from the synthetic equations, and M e are evalued from the solution en+1 according to (11). 
The limiter β is defined as

β = min (KnR/Hl, Knth)

KnR/Hl
, (54)

where Hl is the dimensionless height of a local triangle that characterizes the local cell size; Knth is a preassigned thresh-
old value that is set as Knth = 100 when KnR = 10, and Knth = 1 otherwise. This implementation is introduced to retain 
numerical stability since the high-order terms become very large when the local ballistic effect near the solid corners is 
significant.

The four boundaries of the domain are modeled as isothermal surfaces with the given temperatures. Thus, when solving 
the kinetic equation, the distributions of the phonon reflected from the boundaries are determined as

e (x2 = 1, v · n > 0) = T H

4π
, e (x1 = 0,1 or x2 = 0, v · n > 0) = TC

4π
, (55)

where n denotes the unit normal vector of the boundaries pointing into the domain. For the moment equations, we impose 
the boundary condition in the following ways. The system is similar to the Stokes equations for fluid if T and q are 
analogous to the pressure and velocity vector of the Stokes flow. Therefore, the isothermal boundary condition can be 
implemented as the same as the pressure inlet condition for the Stokes equations [55]: the given temperature is imposed 
on the Neumann boundary by a pseudo-traction vector; while the heat flux at the boundary is obtained as part of the 
solution. However, when the conduction occurs in the phonon hydrodynamic regime with KnR = 10 and KnN = 0.01, the 
Neumann condition may lead to complete wrong solutions because the rapid change of temperature in the vicinity of 
boundaries can result in a significant overestimation of heat flux. Then for this case, we specify the values of heat flux 
at the boundaries just as the Dirichlet condition for Stokes flows. The boundary values of temperature and heat flux are 
calculated from en+1/2 to ensure the correct temperature jump.

Fig. 7(b)-(e) compare the temperature contours predicted by the GSIS (shown on the right half domain) and the CIS 
(shown on the left half domain). The two schemes obtain almost the same results in different phonon transport regimes. 
The numbers of iterative steps and the CPU time cost by each scheme are listed in Table 3. The convergence property is 
coincident with that found in the previous sections for the one-dimensional problems: the GSIS can find the steady-state 
solutions within several dozens of iterations for all the groups of KnR and KnN ; when any of KnR and KnN is small, the 
GSIS can significantly reduce the iteration steps, compared to the CIS. Since the additional time used to solve the moment 
equations is much smaller than that for the kinetic equation, the saving of CPU time by the GSIS is proportional to the 
number of iterations it reduces; hence the GSIS can be much faster than the CIS.

Finally, we push the simulation towards the Fourier conduction limit to check if the GSIS can recover the solution 
predicted by the Fourier’s conduction law on such coarse mesh with a cell size much larger than the phonon mean free 
path. To this end, we set KnR = 0.001, KnN = 105, so the maximum (minimum) cell size is more than 100 (about 6) times 
the mean free path. The Fourier’s solution is determined by the Laplace equation ∇2 T = 0 as
14
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T − TC

T H − TC
= 2

π

∞∑
m=1

(−1)m+1 + 1

m
sin (mπx1)

sinh (mπx2)

sinh (mπ)
. (56)

In Fig. 7(f), the right half domain plots the temperature contours obtained from the GSIS (terminated at the 44th iteration 
when ε < 10−7), while the analytical solution (56) is illustrated in the left half domain. It is found that the two results 
are in good agreement. Therefore, the GSIS can recover the Fourier’s limit. However, the CIS hardly gets a solution for this 
problem due to slow convergence, where the convergence rate is nearly 1.

5. Conclusions and outlooks

We have developed the general synthetic iterative scheme to expedite the convergence of the conventional iterative 
scheme in finding steady-state solutions for multiscale phonon transport problems that Callaway’s dual-relaxation model 
describes. The critical ingredient of the new scheme is that a set of macroscopic moment equations is tightly coupled and 
simultaneously solved with the Boltzmann transport equation. The synthetic macroscopic equations are strictly derived from 
the Boltzmann transport equation, which contain not only the diffusive/hydrodynamic part but also the high-order moments 
taking account all the ballistic transport effects. During the iteration, macroscopic quantities such as temperature and heat 
flux are resolved from the macroscopic equations, which are used to calculate the equilibria in the scattering terms and 
guide the evolution of the phonon distribution function; meanwhile, the distribution function obtained from the Boltzmann 
transport equation provides the highest-order moments for the closure of the macroscopic synthetic equations. Since the 
macroscopic equations allow very efficient exchange of information over the whole computational domain, fast convergence 
in the entire range of Knudsen numbers is realized.

The Fourier stability analysis has been conducted for systems with periodic boundary conditions. The convergence rates 
of the two schemes have been rigorously calculated; thus the superiority of the new scheme over the conventional one 
has been revealed. It has been shown that the convergence rate of the GSIS can always be maintained under 0.2 so that 
only two iterations are required to reduce the iterative error by one order of magnitude. Several numerical tests in different 
phonon transport regimes further demonstrate the efficiency of the GSIS, especially in the diffusive and hydrodynamics 
regimes, where the number of iteration steps, as well as the CPU time, are reduced by up to three orders of magnitude in 
the GSIS, compared to the conventional scheme.

For future works, we will extend the GSIS to nonlinear systems and multi-frequency model and consider unsteady-state 
problems.
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Appendix A. Discontinuous Galerkin formulations

When considering the heat conduction in a two-dimensional square domain, the discontinuous Galerkin (DG) finite 
element method is applied to discretize the governing system on triangular meshes in the physical space. We present the 
detailed formulations in this section. Let � ∈R2 denoting a computational domain with boundary ∂� in the x1 − x2 plane, 
which is partitioned into Nel disjoint regular triangles �l : � = ∪Nel

l {�l}. The boundaries of the triangles define a group of 
N f c faces �c : ϒ = ∪Nel

l {∂�l} = ∪N f c
c {�c}. For the solution of the kinetic equation (16), approximations of the distribution 

function e are sought in the following piecewise finite element space
15
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V =
{
ψel : ψel|�l ∈ PK (�l) ,∀�l ⊂ �

}
, (A.1)

where P K (D) denotes the space of K -th order polynomials on a domain D . We introduce the notations (a,b)D =∫
D∈R2 (a � b)dx1dx2 and 〈a, b〉D = ∫

D∈R1 (a � b) d�, where � can be either the dot (·) or tensor (⊗) product. The DG 
formulation to find the approximations of e within each �l at each iteration step is

1

KnC
(ψel, e)�l

+ 〈ψel, Ĥ · n〉∂�l − (∇ψel, ve)�l
= 1

KnR

(
ψel, eR

eq

)
�l

+ 1

KnN

(
ψel, eN

eq

)
�l

, (A.2)

where n is the outward unit normal vector of ∂�l and Ĥ is the numerical flux that depends on the solutions from both 
sides of ∂�l since the approximations of e are discontinuous there. We calculate the numerical flux using the first-order 
upwind principle as

Ĥ · n = 1

2
v · n

(
e + e∗) + 1

2
|v · n| (

e − e∗)
, (A.3)

with e∗ being the distribution from a neighboring triangle that shares the boundary ∂�l with �l . If ∂�l is at the boundary 
of computational domain, i.e. ∂�l ∩ ∂� 
= 0, e∗ is evaluated using the given boundary condition. Once e∗ is known, e in �l
can be obtained by solving the linear system (A.2). A sweeping technique is utilized to find e in an element-by-element 
fashion along the characteristic direction [56], i.e., direction of v .

The synthetic macroscopic equations are solved by the hybridizable discontinuous Galerkin (HDG) method, where we 
first rewrite the steady-state governing equations (17)-(19) into the following mixed system

Gu + ∇ · [Gc +Gd] = 0,

P − KnC

5
∇q + � = 0,

(A.4)

where

Gu =
[

0
1

KnR
q

]
, Gc =

[
q

T
3 I

]
, Gd =

⎡
⎣ 0

−
(

P + P � − 2
3 tr (P ) I

) ⎤
⎦ , (A.5)

and

� = τC

⎡
⎣ ∂M111

∂x1
+ ∂M112

∂x2
+ 1

2

(
∂M221
∂x1

+ ∂M222
∂x2

)
1
2

(
∂M121
∂x1

+ ∂M122
∂x2

)
1
2

(
∂M121
∂x1

+ ∂M122
∂x2

)
1
2

(
∂M111
∂x1

+ ∂M112
∂x2

)
+ ∂M221

∂x1
+ ∂M222

∂x2

⎤
⎦ , (A.6)

with I being the identity matrix and tr (P ) denoting the (linear algebra) trace of P . The auxiliary variable P is introduced 
to approximate the gradient of heat flux ∇q. As a result, the stress N〈i j〉 in (19) is equal to

N〈i j〉 = −
(

Pij + P ji − 2

3
Pkkδi j

)
. (A.7)

The quantities M = [T ,q]� as well as the auxiliary variable P are approximated within �l in the finite element space V ; the 

traces of temperature and heat flux M̂ =
[

T̂ , q̂
]�

, i.e., the values of these field variables on the faces ϒ, are approximated 
in the following piecewise finite element space

W =
{
ψ f c : ψ f c|�c ∈ PK (�c) ,∀�c ⊂ ϒ

}
. (A.8)

It is assumed that M̂ are singled-valued on each face.
The HDG method solves the system in two steps: first, a global problem is set up to determine the traces M̂ ; then a 

local problem with M̂ as the boundary condition on ∂�l is solved element-by-element to obtain the solutions for M and 
P . The weak formulation for the local problem is to find (M, P ) ∈ [V]3 × [V]4 such that

(r,Gu)�l
− (∇r,Gc +Gd)�l

+ 〈r, F̂ · n〉∂�l = 0,

(t, P )�l
+ KnC

5
(∇ · t,q)�l

− KnC

5
〈t · n, q̂〉∂�l = (t,�)�l

,
(A.9)

for all (r, t) ∈ [V]3 × [V]4, where the numerical flux F̂ is defined as:

F̂ · n =
[

F̂ T · n
F̂ q · n

]
=

⎡
⎣ q

1
3 T̂ −

(
P + P � − 2

3 tr (P ) I

) ⎤
⎦ · n +

[
T − T̂
q − q̂

]
. (A.10)
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The global problem is set up by enforcing the continuity of the numerical flux over all the interior faces. It is stated as: find 
M̂ ∈ [W]3 such that〈(

F̂ · n
)+

, w

〉
�c

+
〈(

F̂ · n
)−

, w

〉
�c

= 0, on �c ∈ ϒ\∂�, (A.11)

for all w ∈ [W]4. Here the superscripts ± denote the numerical fluxes obtained from the triangles on both sides of the 
face. On boundary faces �c ∈ ϒ ∩ ∂�, M̂ are determined from boundary conditions. In this paper, we consider two types of 
boundary condition: the Dirichlet condition where the given value of heat flux qb is imposed on the Dirichlet boundary ϒD

so that〈
q̂ − qb, w

〉
�c

= 0, on �c ∈ ϒD , (A.12)

and the Neumann boundary ϒN where the given value of temperature Tb is imposed on the Neumann boundary in a way 
analogue to the pseudo traction on the Stokes flow [55] so that〈(

F̂ q · n
)+ − Tb

3
n+, w

〉
�c

= 0, on �c ∈ ϒN . (A.13)

Here we assume that for a boundary face, only the triangle on the ‘+’ side exits.
On assembling the local problem (A.9) and the global problem (A.11) to (A.13) over all the triangles and faces, we can 

obtain a matrix system of form⎡
⎣ AM A P AM̂

B M B P B M̂
Y M Y P Y M̂

⎤
⎦

⎡
⎣ M

P

M̂

⎤
⎦ =

⎡
⎣ SM

S P

SM̂

⎤
⎦ , (A.14)

where M, P and M̂ are the vectors of degrees of freedom of the field variables M and the auxiliary variable P , as well as 
the traces of the field properties M̂ , respectively. Note that the degrees of freedom for M and P are grouped together and 
ordered element-by-element. As a consequence, the corresponding coefficient matrix [AM , A P ; B M , B P ] has block diagonal 
structure. Therefore, we can eliminate M and P to obtain a reduced linear system involving only M̂. Once M̂ is determined, 
M and P are reconstructed corresponding to the local problem (A.9) in an element-wise fashion. In this paper the reduced 
linear system for M̂ is solved by the direct solver PARDISO [57].

References

[1] D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93 (2) 
(2003) 793–818.

[2] D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, et al., Nanoscale thermal transport. 
II. 2003–2012 Appl. Phys. Rev. 1 (1) (2014) 011305.

[3] G. Chen, Non-Fourier phonon heat conduction at the microscale and nanoscale, Nat. Rev. Phys. 3 (8) (2021) 555–569.
[4] H. Bao, J. Chen, X. Gu, B. Cao, A review of simulation methods in micro/nanoscale heat conduction, ES Energy Environ. 1 (2018) 16–55.
[5] J.Y. Murthy, S.V.J. Narumanchi, J.A. Pascual-Gutierrez, T. Wang, C. Ni, S.R. Mathur, Review of multiscale simulation in submicron heat transfer, Int. J. 

Multiscale Comput. Eng. 3 (1) (2005) 5–32.
[6] X. Gu, Y. Wei, X. Yin, B. Li, R. Yang, Colloquium: phononic thermal properties of two-dimensional materials, Rev. Mod. Phys. 90 (2018) 041002.
[7] Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860 

(2020) 1–26.
[8] G. Chen, Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 

2005.
[9] M. Kaviany, Heat Transfer Physics, Cambridge University Press, 2008.

[10] C.C. Ackerman, B. Bertman, H.A. Fairbank, R.A. Guyer, Second sound in solid helium, Phys. Rev. Lett. 16 (1966) 789–791.
[11] H. Beck, P.F. Meier, A. Thellung, Phonon hydrodynamics in solids, Phys. Status Solidi A 24 (1) (1974) 11–63.
[12] Y. Guo, M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595 (2015) 1–44.
[13] C. Yu, Y. Ouyang, J. Chen, A perspective on the hydrodynamic phonon transport in two-dimensional materials, J. Appl. Phys. 130 (1) (2021) 010902.
[14] S. Huberman, R.A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A.A. Maznev, G. Chen, K.A. Nelson, Observation of second sound in graphite at 

temperatures above 100 K, Science 364 (6438) (2019) 375–379.
[15] J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (4) (1959) 1046.
[16] R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev. 148 (2) (1966) 766.
[17] S. Chapman, T.G. Cowling, C. Cercignani, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal 

Conduction, and Diffusion in Gases, 3rd edition, Cambridge Mathematical Library, Cambridge University Press, 1995.
[18] D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1989) 41–73.
[19] Z. Banach, W. Larecki, Chapman–Enskog method for a phonon gas with finite heat flux, J. Phys. A, Math. Theor. 41 (37) (2008) 375502.
[20] M.J. Fryer, H. Struchtrup, Moment model and boundary conditions for energy transport in the phonon gas, Contin. Mech. Thermodyn. 26 (5) (2014) 

593–618.
[21] M. Simoncelli, N. Marzari, A. Cepellotti, Generalization of Fourier’s law into viscous heat equations, Phys. Rev. X 10 (2020) 011019.
[22] L. Sendra, A. Beardo, P. Torres, J. Bafaluy, F.X. Alvarez, J. Camacho, Derivation of a hydrodynamic heat equation from the phonon Boltzmann equation 

for general semiconductors, Phys. Rev. B 103 (2021) L140301.
17

http://refhub.elsevier.com/S0021-9991(22)00498-3/bibBB23C9879EA54095DA70FC2374BA5642s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibBB23C9879EA54095DA70FC2374BA5642s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib7917F7E0BCB5F45FCB6143423A9DC2DCs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib7917F7E0BCB5F45FCB6143423A9DC2DCs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib722914A063DE482B021F0A23284F8DAEs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib65FA9F7D11AB184FC3EF8CC626B5A3C0s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib30F455A71F7D0D3C1EF51FADF294476Cs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib30F455A71F7D0D3C1EF51FADF294476Cs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibEE73955CC8AB6ADB29D0A1BB40A7580Es1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4674150CA70AE859394DC21E3CA4EA0As1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4674150CA70AE859394DC21E3CA4EA0As1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib22624C37A564160A46DA4668BAAD4444s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib22624C37A564160A46DA4668BAAD4444s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4D3BA0BBAE6DF1F200D0943F989F2E7Cs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib58122FD86585A8B3DD30176272080938s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib34DBB3427D076905A6599038DCEDA085s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4F889B84A5C8E55381D969A4BDBC06DBs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibB5449CDA433B5A6504A9C9FB5B01BDCFs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibA86C9BFB0C81992EB6592D7CF12CE4D5s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibA86C9BFB0C81992EB6592D7CF12CE4D5s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibCE788375458A71DD79D80AF2F816B365s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibE8C49B207DC2DC559C66DE8A855C2995s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib93E863B3FEF1C301D59DF2593CEA6AAEs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib93E863B3FEF1C301D59DF2593CEA6AAEs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib6BE72C232EE376B99950F7D4D78ACDBEs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib9607250542AA8FBC7A02C3AFC9D6759Fs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4CA77CA5695B3F92D288ED6DF41D4D74s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4CA77CA5695B3F92D288ED6DF41D4D74s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib9D9A95D6111895EB656732402B6AF399s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibB3A6B52E05F3CFD87023D977345911E6s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibB3A6B52E05F3CFD87023D977345911E6s1


J. Liu, C. Zhang, H. Yuan et al. Journal of Computational Physics 467 (2022) 111436
[23] S. Mazumder, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization, J. Heat Transf. 123 (4) 
(2001) 749–759.

[24] X. Li, S. Lee, Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene, Phys. Rev. B 99 (2019) 085202.
[25] B.-D. Nie, B.-Y. Cao, Thermal wave in phonon hydrodynamic regime by phonon Monte Carlo simulations, Nanoscale Microscale Thermophys. Eng. 24 (2) 

(2020) 94–122.
[26] A. Christensen, S. Graham, Multiscale lattice Boltzmann modeling of phonon transport in crystalline semiconductor materials, Numer. Heat Transf., Part 

B, Fundam. 57 (2) (2010) 89–109.
[27] S.A. Ali, G. Kollu, S. Mazumder, P. Sadayappan, A. Mittal, Large-scale parallel computation of the phonon Boltzmann transport equation, Int. J. Therm. 

Sci. 86 (2014) 341–351.
[28] R. Yang, G. Chen, M. Laroche, Y. Taur, Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations 

and phonon Boltzmann equation, J. Heat Transf. 127 (3) (2005) 298–306.
[29] Z. Guo, K. Xu, Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation, Int. J. Heat Mass 

Transf. 102 (2016) 944–958.
[30] X.-P. Luo, Y.-Y. Guo, M.-R. Wang, H.-L. Yi, Direct simulation of second sound in graphene by solving the phonon Boltzmann equation via a multiscale 

scheme, Phys. Rev. B 100 (15) (2019) 155401.
[31] J.-P.M. Péraud, N.G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo 

formulations, Phys. Rev. B 84 (20) (2011) 205331.
[32] Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering, Vol. 3, World Scientific, 2013.
[33] J.M. Loy, J.Y. Murthy, D. Singh, A fast hybrid Fourier–Boltzmann transport equation solver for nongray phonon transport, J. Heat Transf. 135 (1) (2012) 

011008.
[34] J.M. Loy, S.R. Mathur, J.Y. Murthy, A coupled ordinates method for convergence acceleration of the phonon Boltzmann transport equation, J. Heat Transf. 

137 (1) (2015) 012402.
[35] C. Zhang, Z. Guo, S. Chen, Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation, Phys. 

Rev. B 96 (6) (2017) 063311.
[36] C. Zhang, Z. Guo, S. Chen, An implicit kinetic scheme for multiscale heat transfer problem accounting for phonon dispersion and polarization, Int. J. 

Heat Mass Transf. 130 (2019) 1366–1376.
[37] M.L. Adams, E.W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Prog. Nucl. Energy 40 (1) (2002) 3–159.
[38] J.R. Harter, S.A. Hosseini, T.S. Palmer, P.A. Greaney, Prediction of thermal conductivity in dielectrics using fast, spectrally-resolved phonon transport 

simulations, Int. J. Heat Mass Transf. 144 (2019) 118595.
[39] D. Terris, K. Joulain, D. Lemonnier, D. Lacroix, Modeling semiconductor nanostructures thermal properties: the dispersion role, J. Appl. Phys. 105 (7) 

(2009) 073516.
[40] H.J. Kopp, Synthetic method solution of the transport equation, Nucl. Sci. Eng. 17 (1) (1963) 65–74.
[41] C. Zhang, S. Chen, Z. Guo, L. Wu, A fast synthetic iterative scheme for the stationary phonon Boltzmann transport equation, Int. J. Heat Mass Transf. 

174 (2021) 121308.
[42] W. Su, L. Zhu, P. Wang, Y. Zhang, L. Wu, Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations?, J. Comput. 

Phys. 407 (2020) 109245.
[43] W. Su, Y. Zhang, L. Wu, Multiscale simulation of molecular gas flows by the general synthetic iterative scheme, Comput. Methods Appl. Mech. Eng. 373 

(2021) 113548.
[44] L. Zhu, X. Pi, W. Su, Z.-H. Li, Y. Zhang, L. Wu, General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows, 

J. Comput. Phys. 430 (2021) 110091.
[45] R. Yang, S. Yue, B. Liao, Hydrodynamic phonon transport perpendicular to diffuse-gray boundaries, Nanoscale Microscale Thermophys. Eng. 23 (1) 

(2019) 25–35.
[46] W. Dreyer, H. Struchtrup, Heat pulse experiments revisited, Contin. Mech. Thermodyn. 5 (1) (1993) 3–50.
[47] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials, Nat. Commun. 6 (1) (2015) 

6400.
[48] R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals, Phys. Rev. 148 (1966) 

778–788.
[49] C. Zhang, S. Chen, Z. Guo, Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials, Int. J. Heat Mass Transf. 176 

(2021) 121282.
[50] A. Majumdar, Microscale heat conduction in dielectric thin films, J. Heat Transf. 115 (1) (1993) 7–16.
[51] S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in suspended graphene, Nat. Commun. 6 (1) (2015) 6290.
[52] W. Su, L. Zhu, L. Wu, Fast convergence and asymptotic preserving of the general synthetic iterative scheme, SIAM J. Sci. Comput. 42 (6) (2020) 

B1517–B1540.
[53] Y. Guo, M. Wang, Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway’s dual relaxation 

model, Phys. Rev. B 96 (13) (2017) 134312.
[54] A. Beardo, M. Calvo-Schwarzwälder, J. Camacho, T. Myers, P. Torres, L. Sendra, F. Alvarez, J. Bafaluy, Hydrodynamic heat transport in compact and holey 

silicon thin films, Phys. Rev. Appl. 11 (2019) 034003.
[55] R. Sevilla, A. Huerta, HDG-NEFEM with degree adaptivity for Stokes flows, J. Sci. Comput. 77 (2018) 1953–1980.
[56] W. Su, P. Wang, Y. Zhang, L. Wu, Implicit discontinuous Galerkin method for the Boltzmann equation, J. Sci. Comput. 82 (2020) 39.
[57] O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst. 20 (3) (2004) 475–487, 

selected numerical algorithms.
18

http://refhub.elsevier.com/S0021-9991(22)00498-3/bib18E70DEF7D934BB7B12C60F1D32DCFB8s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib18E70DEF7D934BB7B12C60F1D32DCFB8s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib301B87A1E7D58327CEF9D4E39FDE9E8Bs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib104A1EAD2E891ADBFA560CED717E2479s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib104A1EAD2E891ADBFA560CED717E2479s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib447A469EC3B6DBA8DEFB808E4D901C7Es1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib447A469EC3B6DBA8DEFB808E4D901C7Es1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib3BC503B66960BBF235F80BC6ACFD555Cs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib3BC503B66960BBF235F80BC6ACFD555Cs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib293246169ED1EA4A10C6F926CDBCE1ADs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib293246169ED1EA4A10C6F926CDBCE1ADs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib5E9B24F9652E8CA09EFAF01B67BA28F2s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib5E9B24F9652E8CA09EFAF01B67BA28F2s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib24CD3B55B638BB0B7484A1D38CE15855s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib24CD3B55B638BB0B7484A1D38CE15855s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib5ABCB21EEDC2FD9053AAAB539A0F0213s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib5ABCB21EEDC2FD9053AAAB539A0F0213s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibF88E4EA550F5A070B7DAB2B362F0B55Bs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib79A5E5778B77361959D916BF6698444Fs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib79A5E5778B77361959D916BF6698444Fs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib89AD55542A405536C3569BEFC525CF73s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib89AD55542A405536C3569BEFC525CF73s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibB226E5CE74EA74040C93DD6AF95255B4s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibB226E5CE74EA74040C93DD6AF95255B4s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibADADA53A0B925B37E502B5AFD7952C57s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibADADA53A0B925B37E502B5AFD7952C57s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib237BA988623A725967AC3639C668F10Ds1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib7A27323EE447ADC0AA9E86B75CB63EFBs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib7A27323EE447ADC0AA9E86B75CB63EFBs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib0D990BA52AA25D35B742225F50202AB2s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib0D990BA52AA25D35B742225F50202AB2s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibA0860C587524E74BBDCEE273B98D3355s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4F89A4B035601A47DDCC62021004C197s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib4F89A4B035601A47DDCC62021004C197s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibEC14FF33339779193F18571DA4EF4E5As1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibEC14FF33339779193F18571DA4EF4E5As1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibA432D78B08A2787AEEAF3C2205B40FC5s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibA432D78B08A2787AEEAF3C2205B40FC5s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib659891435EAF0B54802EEF92B9A87442s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib659891435EAF0B54802EEF92B9A87442s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibC039D36E910F20D70ED60736BEADC9A8s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibC039D36E910F20D70ED60736BEADC9A8s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibCA91845AAF043B72781387A2FC350724s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib2D4657318C56A7E1237E537462D0992Fs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib2D4657318C56A7E1237E537462D0992Fs1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib1290C254E051429E90CADB443C348A67s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib1290C254E051429E90CADB443C348A67s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib1E83542B7EF7CFC554359C9CC212C77Ds1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib1E83542B7EF7CFC554359C9CC212C77Ds1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib16C1DD0DB470C86F13A6E6967AB84046s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibDE58C187B0ED58FD6D1E03A94EC344B2s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibAA51E3FF7F2921A04FE4571E62D729F7s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bibAA51E3FF7F2921A04FE4571E62D729F7s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib418CDAC7544133D2F9FB33F3A4B03E29s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib418CDAC7544133D2F9FB33F3A4B03E29s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib282BCBEA17718E58A35916F131AB6180s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib282BCBEA17718E58A35916F131AB6180s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib2D3CA0B88C2363ADF1AD7F45E7035851s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib11E6CD7F704A5228D4248D9C0EB099B7s1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib60FE97C91E4540D95D30BC69895E371Ds1
http://refhub.elsevier.com/S0021-9991(22)00498-3/bib60FE97C91E4540D95D30BC69895E371Ds1

	A fast-converging scheme for the phonon Boltzmann equation with dual relaxation times
	1 Introduction
	2 Phonon Boltzmann equation: the Callaway model
	3 Iterative schemes
	3.1 Algorithms
	3.2 Fourier stability analysis

	4 Numerical tests
	4.1 Quasi-one-dimensional heat conduction across an infinitely thin sheet
	4.2 Quasi-one-dimensional heat conduction in an infinitely long film
	4.3 Quasi-two-dimensional heat conduction in a square domain

	5 Conclusions and outlooks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Discontinuous Galerkin formulations
	References


