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ABSTRACT

The temperature jump problem in rarefied molecular (diatomic and polyatomic) gases is investigated based on a one-dimensional heat conduc-
tion problem. The gas dynamics is described by a kinetic model, which is capable of recovering the general temperature and thermal relaxation
processes predicted by the Wang–Chang Uhlenbeck equation. Analytical formulations for the temperature jump coefficient subject to the classi-
cal Maxwell gas–surface interaction are derived via the Chapman–Enskog expansion. Numerically, the temperature jump coefficient and the
Knudsen layer function are calculated by matching the kinetic solution to the Navier–Stokes prediction in the Knudsen layer. Results show that
the temperature jump highly depends on the thermal relaxation processes: the values of the temperature jump coefficient and the Knudsen
layer function are determined by the relative quantity of the translational thermal conductivity to the internal thermal conductivity; and a mini-
mum temperature jump coefficient emerges when the translational Eucken factor is 4/3 times of the internal one. Due to the exclusion of the
Knudsen layer effect, the analytical estimation of the temperature jump coefficient may possess large errors. A new formulation, which is a
function of the internal degree of freedom, the Eucken factors, and the accommodation coefficient, is proposed based on the numerical results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086076

I. INTRODUCTION

A gas flow may be modeled either by the Navier–Stokes equa-
tions as a continuum or by the kinetic equation as a myriad of discrete
molecules. The continuous description equipped with non-slip velocity
and non-jump temperature conditions at the solid boundary is only
valid when the mean free path of gas molecules k is significantly
smaller than the characteristic flow length L; otherwise, the kinetic
description at the mesoscopic level of molecular velocity distribution
function should be adopted. Compared to the continuum equations,
solving the kinetic equation is numerically much more expensive,
since the independent variables are increased with the number of
physical variables (e.g., position, velocity, and internal energy) on
which the state of every gas molecule depends. Therefore, for flows
having moderate Knudsen number (Kn ¼ k=L) where the kinetic
effect resulted from the inhomogeneity induced by the solid boundary
is only important within the Knudsen layer of thickness OðkÞ, it is
very attractive to effectively quantify the flow behaviors though the
continuum equations incorporated velocity slip and temperature jump
boundary conditions, while the actual kinetic effect can be taken into
account by the Knudsen layer function.

The temperature jump at the interface between a solid wall and
an adjacent gas is traditionally defined as the difference between the
temperature of the wall and the temperature arising at the wall from a
linear extrapolation of the temperature curve of gas beyond the
Knudsen layer,1,2 written as

Te ¼ Tw þ fT
l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTw

m

r
@T
@n

at wall; (1)

where Te and Tw are the linearly extrapolated gas temperature and the
wall temperature, respectively; fT is the constant temperature jump
coefficient (TJC); l is the shear viscosity of gas; p is the local gas pres-
sure; kB is the Boltzmann constant; m is the mass of gas molecules;
and @=@n ¼ n � r with n being the unit outward normal vector at the
wall. The Knudsen layer function is defined as the deviation of the lin-
early extrapolated temperature from the true temperature in the
Knudsen layer. Figure 1 shows a schematic diagram of the problem. A
rough estimation of the coefficient fT is given by3

fT ¼ c
ffiffiffi
p

p
cþ 1ð ÞPr

2� a0
a0

; (2)
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where c is the specific heat ratio; Pr is the Prandtl number; and a0 is
the constant accommodation coefficient in the classical Maxwell
boundary condition, representing the fraction of incident molecules
that are diffusely reflected at the wall. This estimation is obtained on
the assumption that the velocity distribution function of gas molecules
does not vary within the Knudsen layer. Note that velocity gradients
near the wall may lead to temperature jump as well; however, this
effect is usually ignored since it is small and cannot be controlled in
experiments.4

More rigorous analysis can be done by matching the kinetic solu-
tion inside the Knudsen layer to the outer Navier–Stokes solution.
Taking advantages of the improvement in solving kinetic equations,
TJCs have been obtained based on the Bhatnagar–Gross–Krook (BGK)
kinetic model,5,6 Shakhov model,7 and the linearized Boltzmann equa-
tion.8–12 It is shown that under the fully diffuse reflection at walls, the
TJC varies in a small range frommodel to model; the one obtained from
the Shakhov model equation is very close to those obtained from the
Boltzmann equation with more realistic Lennard–Jones potentials. In
practice, a value of fT ¼ 1:95 is recommended.2 The dependence of the
jump coefficient on the accommodation coefficient was approximated as

fT ¼ 15
ffiffiffi
p

p
16

2� a0
a0

þ 0:173

� �
; (3)

by Welander2 or as

fT ¼ 15
ffiffiffi
p

p
16

2� a0
a0

1þ 0:1621a0ð Þ; (4)

by Loyalka.13 Both the estimations are based on the solutions of the
BGK equation. The TJCs subjected to the Cercignani–Lampis gas–
surface interaction,7,12 as well as those of gas mixtures,14,15 have also

been calculated. A comprehensive review and comparison of these
data have been reported by Sharipov.2 Note that the expression (1) is
generally a first-order result, which is adequate when Kn< 0.1.16 The
second-order temperature jump condition can be derived through the
asymptotic expansion of the molecular velocity distribution function;17

a second jump coefficient emerges along with the second-order deriva-
tive of gas temperature at the wall. For steady flows without external
heating source, the second jump coefficient is only known, equal to
zero, for the BGK model. The second jump coefficients for a problem
governed by the Poisson equation, i.e., the steady conduction subject
to forcing heating, and an unsteady problem subject to time-
dependent wall temperature have been obtained.16,18

Although one more often deals with molecular (diatomic or poly-
atomic) gases in practical applications, the above-mentioned works
only considered monatomic gases. When the Boltzmann equation is
extended to the Wang–Chang Uhlenbeck (WCU) equation19 for
molecular gases, additional degrees of freedom due to the excitation of
internal energies associated with rotations, vibrations, and electrons
yield a much more complicated governing system; and the internal
motions are treated quantum-mechanically and each energy level is
assigned with an individual distribution function, making analytical
and numerical solutions extremely difficult and expensive. Hitherto
the TJC in molecular gases, although very few, are calculated based on
kinetic model equations. The probably first estimation was made by
Lin and Willis1 from the Morse model for gases with only rotations
excited, which is read as

fT ¼ c
ffiffiffi
p

p
cþ 1ð ÞPr

2� a0
a0

þ 0:17

� �
; (5)

implying that fT roughly depends on, considering the gas physical
properties, the ratio of the shear viscosity to the thermal conductivity,
i.e., the Prandtl number Pr, and the number of internal degrees of free-
dom that determines the specific heat ratio c. In the particular case of
a monatomic gas when c ¼ 5=3 and Pr ¼ 2=3, the estimation (5) is
reduced to (3). A more comprehensive analysis on both the velocity
slip and temperature jump in molecular gases was recently con-
ducted.20 The slip/jump coefficients and the Knudsen layer functions
were obtained through the Chapman–Enskog expansion to the ellip-
soidal BGK (ES-BGK) model equation.21,22 The ES-BGK model con-
tains three adjustable parameters, allowing fitting the experimental
values of the shear viscosity, the thermal conductivity, and the bulk
viscosity that appears due to the finite time required for the system to
distribute energy among the internal degrees of freedom. The results
for some typical molecular gases show that the TJC also varies with
the bulk viscosity, although not significantly.

In molecular gases, unique transport phenomena, which play
important roles in rarefied molecular gas dynamics,23 take place
because of the exchange of translational and internal energies. It can
be shown24,25 that the relaxation rate between the translational and
internal energies determines the ratio of the bulk viscosity to the shear
viscosity, and the thermal relaxation rates of translational and internal
heat fluxes determine the thermal conductivities, comprising transla-
tional and internal parts. Note that the thermal conductivity (or Pr) in
expression (5) is an overall measurement combining both the transla-
tional and internal contributions. Few data on the temperature jump
coefficient in molecular gases have been reported. To the authors’
awareness, comprehensive study on the effects of the unique relaxation

FIG. 1. The temperature jump is defined as the difference between the wall tem-
perature Tw and the temperature at the wall Te from a linear extrapolation of the
temperature curve in the bulk region; fT is the temperature jump coefficient, and ke
is the equivalent mean free path of gas molecules; The Knudsen layer function Ts
describes the deviation of the linearly extrapolated temperature (dashed line) from
the true temperature (solid line) in the Knudsen layer.
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processes in molecular gases, especially the thermal relaxations, has
been far overlooked. However, we will discover later that the TJC
and Knudsen layer functions have strong dependence on the relaxa-
tion rates of heat fluxes, even though the total thermal conductivity is
fixed.

This work aims to fill the above knowledge gap. Credibility of the
analysis is highly affected by the accuracy of the kinetic equation and
the analytical method or numerical scheme that we use. In this paper,
the behavior of molecular gas flows is described by a kinetic model
introduced by Li et al.25 Been calibrated and verified through the direct
simulation Monte Carlo (DSMC) method, the model has the ability to
recover the general temperature and thermal relaxations derived from
the WCU equation, and freely adjust the relaxation rates, the influence
of which, thus, can be investigated. This cannot be attained by any
other kinetic models.26–29 The remainder of this paper is arranged as
follows: The kinetic description for the dynamics of rarefied molecular
gases including the kinetic equation and gas–surface interaction model
is given in Sec. II. A rough estimation of the TJC subject to the
Maxwell boundary condition is derived by assuming a first-order
Chapman–Enskog velocity-energy distribution function. The details
are given in Sec. III. The one-dimensional steady heat conduction
problem and the assumptions to numerically calculate the TJC and
the Knudsen layer function are presented in Sec. IV, where the numer-
ical scheme is briefly described. The results and discussions are dem-
onstrated in Sec. V followed by an empirical but more accurate
formulation for the TJC. Some conclusions are presented in Sec. VI.
This paper is one of our serial works on the slip/jump coefficients,
where the thermal velocity slip in molecular gases was studied in
Ref. 30.

II. GOVERNING EQUATIONS

The gaseous kinetic description for rarefied molecular gases is
presented in this section. We consider the flow under the constraint
that a gas molecule has three translational and d rotational degrees of
freedom. The rotational energy can be expressed by a single continu-
ous variable I as the way of classical mechanics.

A. Gas kinetic equation

Solving the WCU equation for molecular gases is unrealistic due
to its high complexity and excessive computational burden. Therefore,
kinetic models are proposed to imitate the behavior of the WCU equa-
tion. The typical ones are extended from the BGK-type model equa-
tions of monatomic gases, such as Rykov model,29 ellipsoidal-
statistical BGK model,21,31 and Wang model.32 Recently, the Wu
model25,33 is proposed to improve the accuracy of model equations by
using the Boltzmann collision operator of monatomic gases for elastic
collisions and incorporating the thermal relaxation rates to recover the
correct transport coefficients. Thus, the Wu model is adopted in the
present work and briefly introduced as following.

In spatial-homogeneous systems, on an average sense, the relaxa-
tion of the temperature associated with the rotational energy denoted
as Tr is described by the Jeans–Landau equation,

@Tr

@ t̂
¼ pt

l
T � Tr

Z
; (6)

where t̂ is the time, pt is the kinetic pressure, l is the gas shear vis-
cosity, Z is the rotational collision number (roughly speaking, a gas

molecule would experience one inelastic collision in every Z binary
collisions), and T is the overall temperature calculated from the
weighted sum of the translational temperature Tt and the rotational
temperature Tr as T ¼ ð3Tt þ dTrÞ=ð3þ dÞ. Relaxations of the
translational heat flux Qt and the rotational heat flux Qr generated
from the transfer of energies satisfy the following general
relations:34,35

@Qt=@ t̂

@Qr=@ t̂

" #
¼ � pt

l

Att Atr

Art Arr

" #
Qt

Qr

" #
; (7)

where A ¼ ½Aij� (i; j ¼ t or r) is the matrix of relaxation rates possess-
ing positive eigenvalues. These unique transport processes (6) and (7)
induce the bulk viscosity lb and make the thermal conductivity j con-
sisting of both the translational and rotational contributions termed as
jt and jr, respectively, thus j ¼ jt þ jr . These transport coefficients
are determined as25

lb
l

¼ 2dZ

3 d þ 3ð Þ (8)

and

jt
jr

� �
¼ kBl

2m
Att Atr

Art Arr

� ��1
5
d

� �
: (9)

It will be convenient to express the thermal conductivities in terms of
the dimensionless factors,36,37

jm
lkB

¼ 3
2
ft þ d

2
fr ¼ 3þ d

2
feu; (10)

where feu is the total Eucken factor; ft and fr are the translational and
rotational Eucken factors, respectively, defined as

ft ¼ 2
3
jtm
lkB

; fr ¼ 2
d
jrm
lkB

; (11)

respectively. The values of the Eucken factors can be extracted from
experiments.24 For monatomic gases, Att ¼ 2=3 and Atr ¼ Art ¼ Arr

¼ 0, so that feu ¼ ft ¼ 2:5 and fr¼ 0.
To guarantee accuracy, it is required that the model equation is

capable of interpreting the relaxation processes and recovering the
transport coefficients. To this end, we adopt the following kinetic
model, where the state of gas is described by the one-particle velocity-
energy distribution function f ð̂t ;X;V; IÞ with X ¼ ðX1;X2;X3Þ; V
¼ ðV1;V2;V3Þ, and I � 0 being the location, translational velocity,
and rotational energy of gas molecules, respectively. Macroscopic
quantities, such as the number density nð̂t ;XÞ, the bulk velocity
U ð̂t ;XÞ, the temperatures Tt=r ð̂t ;XÞ, and heat fluxes Qt=r ð̂t ;XÞ, are
defined as

n; nU ;
3
2
nkBTt ;

d
2
nkBTr ;Qt ;Qr

� �

¼
ð ð

1;V;
mC2

2
; I;C

mC2

2
;CI

� �
f dVdI; (12)

where C ¼ V � U is the peculiar velocity. We also defined pressures
as pt ¼ nkBTt ; pr ¼ nkBTr , and p¼ nkBT in terms of the translational,
rotational, and overall temperatures, respectively.
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In the absence of external force, the evolution of f is governed by

@f

@ t̂
þ V � @f

@X
¼ gt � f

ŝ|fflffl{zfflffl}
elastic

þ gr � gt
Zŝ|fflfflffl{zfflfflffl}

inelastic

; (13)

where ŝ ¼ l=pt is the relaxation time related to translational motions,
and the terms on the right-hand side of the equation describe the
change in f due to elastic and inelastic collisions, respectively. The ref-
erence velocity distribution functions gt and gr, expanding about the
equilibrium f0 ¼ EtðTÞ � ErðTÞ in a series of orthogonal polynomials,
have the following forms:

gt ¼ Et Ttð ÞEr Trð Þ 1þ 2mQt � C
15kBTtpt

mC2

2kBTt
� 5
2

� �"

þ 2mQr � C
dkBTtpr

I
kBTr

� d
2

� �#
; (14a)

gr ¼ Et Tð ÞEr Tð Þ 1þ 2mQ0 � C
15kBTp

mC2

2kBT
� 5
2

� �"

þ 2mQ00 � C
dkBTp

I
kBT

� d
2

� �#
; (14b)

where

Et Tð Þ ¼ n
m

2pkBT

� �3=2

exp � mC2

2kBT

� �
;

Er Tð Þ ¼ Id=2�1

C d=2ð Þ kBTð Þd=2
exp � I

kBT

� �
;

(15)

and Cð�Þ is the gamma function.Q0 and Q00 are linear combinations of
the translational and rotational heat fluxes, which are formulated to
recover the relaxations (7), read as

Q0

Q00

" #
¼ 2� 3Attð ÞZ þ 1 �3AtrZ

�ArtZ Z 1� Arrð Þ

" #
Qt

Qr

" #
: (16)

It is worth noting that this kinetic model can be regarded as a
general version of the Rykov kinetic model,29 regarding that the relaxa-
tion of heat fluxes in the Rykov model is a special circumstance with
Atr¼ 0 and Art¼ 0. In the limit without translational-rotational energy
exchange (Z ! 1, d¼ 0, Att ¼ 2=3, and Atr ¼ Art ¼ Arr ¼ 0), the
kinetic model (13) reduces to the Shakhov model equation for mon-
atomic gases.38

B. Gas–surface interaction model

Considering the gas–wall interaction from the viewpoint of a
non-absorbing wall at rest, all the gas molecules hitting the wall with a
velocity V 0 will return to the flows with a new velocity V. The velocity-
energy distribution function of the molecules in the nearest vicinity of
the wall is denoted as

fw ¼ f �; V � n � 0;

f þ; V � n > 0;

(
(17)

where f� and fþ are the distributions of incident and reflected mole-
cules, respectively. The correlation between the incident and reflected
distribution functions is determined by the reflection kernel
RðV 0 ! VÞ as

f þ ¼ 1
jV � nj

ð
V 0 �n<0

f � V 0ð ÞR V 0 ! Vð ÞdV 0: (18)

Under the classical Maxwell gas–wall interaction model, the
distribution function of the reflected molecules is a linear combi-
nations of two extreme situations: specular reflection and fully
diffuse reflection. In the former situation, the wall is assumed to
be perfectly smooth and rigid; when an incident molecule inter-
acts with the wall, its normal velocity is inverse, while the tangen-
tial velocity remains unchanged. Thus, the reflection kernel is
expressed as

Rspec V
0 ! Vð Þ ¼ d V 0 � V þ 2 V � nð Þnð Þ; (19)

where dð�Þ is the delta function. On the other hand, when an incident
molecule interacts with a rough wall with vibrating atoms, the energy
exchange occurs between the gas molecule and the solid atoms; the
reflected molecules tend to get equilibrium at the wall temperature Tw,
and the reflection kernel is given as

Rdiff V 0 ! Vð Þ ¼ jV � njf0 Twð Þ: (20)

With a constant accommodation coefficient a0, the reflection kernel of
the Maxwell’s boundary condition is read as

RM V 0 ! Vð Þ ¼ a0Rdiff V 0 ! Vð Þ þ 1� a0ð ÞRspec V 0 ! Vð Þ:
(21)

For molecular gases, the reflection kernel can be generalized as

f þ ¼ 1
jV � nj

ð ð
V 0 �n<0

f � V 0; I0ð ÞR V 0 ! V ; I0 ! Ið ÞdV 0dI0; (22)

with

R V 0 ! V; I0 ! Ið Þ

¼ a0
jV � njm2Id=2�1

2pC d=2ð Þ kBTwð Þ2þd=2
� exp � mV2

2kBTw
� I
kBTw

� �

þ ð1� a0Þd V 0 � V þ 2 V � nð Þnð Þd I � I0ð Þ; (23)

where I0 and I denote the rotational energies of the incident and
reflected molecules, respectively.

III. ANALYTICAL ESTIMATION OF TJC

Now, we present an analytical estimation of the TJC, which is
sought at Kn � 1. When the system is close to equilibrium, the distri-
bution function can be expanded as f ¼ f0 þ f1 with f1 being the per-
turbed part to the first order of Chapman–Enskog expansion.39 By
linearizing the reference distribution gt and gr at the equilibrium tem-
perature T and considering a static gas system with respect to the wall,
it is obtained as
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f1 ¼ f0 � l
p
C � r lnT

mC2

2kBT
� 5
2

� �
þ I

kBT
� d

2

� �" #(

þ Tt � T
T

1� 1
Z

� �
mC2

2kBT
� 3
2

� �
� 3
d

I
kBT

� d
2

� �" #

þ 1� 1
Z

� �
2mQt � C
15kBTp

mC2

2kBT
� 5
2

� �
þ 2mQr � C

dkBTp
I

kBT
� d

2

� �" #

þ 1
Z

2mQ0 � C
15kBTp

mC2

2kBT
� 5
2

� �
þ 2mQ00 � C

dkBTp
I

kBT
� d

2

� �" #)
:

(24)

Following the method introduced by Struchtrup,4 the temperature
jump condition is derived by matching the energy fluxes along the
normal direction of solids to the ones computed from the distribution
function fw, i.e.,

Qt � n ¼
ð
mC2

2
C � nfwdVdI;

Qr � n ¼
ð
IC � nfwdVdI:

(25)

From (17), fw contains the distribution of the incident molecules f �

¼ f0 þ f1 and the one of the reflected molecules f þ that is calculated
from (20) based on the kernel (23). Since the specular reflection does
not contribute to the energy exchange in the gas–surface interaction,
the diffuse reflection part of f þ is only considered, which is given by

f þdiff ¼ f0 V ;Twð Þ a0
2Z

ffiffiffiffiffiffi
T
Tw

r
Z þ 1þ Tt

T
Z � 1ð Þ

� �
: (26)

Substituting (24) and (26) into (25), we obtain the expressions
for the heat fluxes in the normal direction at the wall,

Qt �n¼
a0nk

3=2
B

Z 2pmTð Þ1=2
ðTw Tt þTð ÞþT T� 3Ttð ÞÞZ�

� T �Ttð Þ 3T�Twð Þ	
� a0
24Zm

n � ð�2m ZQt þQ0 �Qt


 �þ 15lZkBrTÞ� 	
;

Qr �n¼
a0nk

3=2
B

4Z 2pmTð Þ1=2
d T Zþ 1ð ÞþTt Z� 1ð Þ� 	

Tw�Tð Þ
�

�6T Z� 1ð Þ T �Ttð Þg

þ a0
8Zm

n � 4m ZQr þQ00 �Qr


 �� 2dlZkBrT
� 	

:

(27)

We denote DTt ¼ Tt � Tw; DTr ¼ Tr � Tw as the jumps of the
translational and rotational temperatures, respectively, and write the
heat fluxes in terms of the Eucken factors (11) and the temperature
gradient as

Qt � n ¼ � 3kBlft
2m

@T
@n

; Qr � n ¼ � dkBlfr
2m

@T
@n

: (28)

The correlations between the temperature jumps and the temperature
gradient can be obtained as

l
p

2kBTw

m

� �1=2
@T
@n

¼ 4 Z � 1ð Þd þ 3Z½ �a0DTt þ 4da0DTr

3
ffiffiffi
p

p
Z d þ 3ð Þ ft þ 1

6
ðdAtrfr þ 3 Att � 1ð Þft � 5Þ

� � ;
l
p

2kBTw

m

� �1=2
@T
@n

¼ 3da0DTt þ d 3 Z � 1ð Þd þ dZ½ �a0DTrffiffiffi
p

p
Z d þ 3ð Þ dfr þ 1

2
a0ðd Arr � 1ð Þfr � d þ 3Artft � 1Þ

� � :

(29)

Note that the terms of DTt=r with orders higher than one have been
neglected in (29). The TJCs related to the translational, rotational, and
total temperatures, denoting as f	Tt

; f	Tr
, and f	T , respectively, are even-

tually solved as

f	Tt
¼ 2� a0

a0

ffiffiffi
p

p
3ftðZ d þ 3ð Þ � 3Þ � 4dfr
� 	

8 d þ 3ð Þ Z � 1ð Þ ;

f	Tr
¼ 2� a0

a0

ffiffiffi
p

p �9ft þ 4frðZ d þ 3ð Þ � dÞ� 	
8 d þ 3ð Þ Z � 1ð Þ ;

f	T ¼ 2� a0
a0

ffiffiffi
p

p ð9ft þ 4dfrÞ
8 d þ 3ð Þ :

(30)

When d¼ 0, ft ¼ 2:5, fr¼ 0, and Z ! 1, the system approaches the
limit of monatomic gases, and (30) gives

f	T ¼ f	Tt
¼ 15

ffiffiffi
p

p
16

2� a0
a0

; f	Tr
¼ 0; (31)

where f	T is reduced to the estimation (2), providing c ¼ 5=3 and
Pr¼ 2/3.

The temperature jump coefficients are plotted in Fig. 2 for the
fully diffuse gas surface interaction. From (30), we can have some sim-
ple observations:

1. Each of the three TJCs corresponding to the translational, rota-
tional, and overall temperatures could be quite different from the
other two for a certain gas species.

2. The values of TJCs vary with ft and fr even when the total ther-
mal conductivity is fixed; although ft and fr are determined by
the thermal relaxation rates Aij from (9) and (11), the value of
any individual Aij does not influence the TJCs.

3. The rotational collision number Z affects the translational and
rotational TJCs, where the two TJCs approach infinity (physi-
cally impossible) as Z ! 1; however, the overall TJC has no
dependence on it.

4. For the Maxwell boundary condition, the accommodation coeffi-
cient changes the values of TJCs through the same factor
ð2� a0Þ=a0.
The analytical formulations (30) are derived by making a trunca-

tion in the velocity-energy distribution functions up to the first order
of Chapman–Enskog expansion, i.e., when the Navier–Stokes equa-
tions are valid. It is worth noting that the Navier–Stokes equations
cannot resolve the Knudsen layer, which give additional contributions
to the temperature jump, see the dashed–dotted line and the dashed
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line in Fig. 1. The assumption of the first-order Chapman–Enskog dis-
tribution function may induce large error, e.g., an error of about 15%
for monatomic gases.4 In the following Secs. IV and V, we will numeri-
cally investigate the temperature jump based on the kinetic description
that accounts for all the rarefied effects and calculate the TJC and
Knudsen layer function by comparing the kinetic solution inside the
Knudsen layer to the outer Navier–Stokes solution.

IV. FORMULATIONS FOR NUMERICAL SOLUTION

We calculate the temperature jump problem via the heat conduc-
tion in a dilute molecular gas confined between two parallel plates
located at X1 ¼ 0 and X1 ¼ L, respectively. The plate fixed at X1 ¼ 0
maintains at a temperature T0 þ DT=2, while the other plate has a
temperature T0 � DT=2, so that T0 is a reference temperature and DT
is the temperature difference between the two plates. We will investi-
gate the kinetic effects introduced by the plates under the following
assumptions:

1. Kn � 1, such that the Navier–Stokes description, i.e., the
Laplace equation @2T=@X2

1 ¼ 0 subject to the boundary condi-
tion (1) is valid; the kinetic effects are only important within the
Knudsen layer and can be quantified by the Knudsen layer func-
tion, which vanishes rapidly away from the boundary with the
length scale of variation of the order of Kn.

2. DT � T0, such that variations of the result through the tempera-
ture dependence of transport coefficients are negligible. The
weakly disturbed system can be linearized around the reference
equilibrium state at rest with density q0 and temperature T0.

A. Linear governing system

We have present the kinetic description in Sec. II. To improve
the computational efficiency, two reduced velocity distribution func-
tions Gð̂t ;X;VÞ ¼ Ð10 f dI and Rð̂t ;X;VÞ ¼ Ð10 If dI are introduced
to eliminate the dependence on I. According to the assumption (ii),
the reduced distribution functions can be linearized around global
equilibrium state as G ¼ n0ðE0 þ h0Þ=v3m and R ¼ n0kBT0ðd=2E0
þh1Þ=v3m, where E0 ¼ p�3=2 exp ð�v2Þ is the equilibrium distribution

function and v ¼ V=vm and vm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=m

p
are the most probable

molecular speed. Let us further denote X ¼ Lx; n ¼ n0 1þ .ð Þ; U
¼ vmu; Tt ¼ T0 1þ htð Þ; Tr ¼ T0 1þ hrð Þ; Qt ;Qr ;Q

0;Q00ð Þ
¼ n0kBT0vm qt ; qr; q

0; q00

 �

; t̂ ; ŝ

 �

¼ t;sð Þvm
L ; and T ¼ T0 1þ hð Þ

with h ¼ ð3ht þ dhrÞ=ð3þ dÞ; pt ¼ n0kBT0ð1þ .þ htÞ, and p
¼ n0kBT0ð1þ .þ hÞ. Finally, if we introduce h2 ¼ h1 � dh0=2, the
evolution of the linear system is eventually described by h0 and h2,
whose governing equations are

@h0
@t

þ v � @h0
@x

¼ L 0;

@h2
@t

þ v � @h2
@x

¼ L 2;

(32)

where

L 0 ¼ L S þ E0
Zs

h� htð Þ v2 � 3
2

� ��

þ 4 q0 � qt

 � � v

15
v2 � 5

2

� ��
;

L 2 ¼ 1
s

d
2
E0hr � h2

� �
þ dE0
2Zs

h� hrð Þ þ 2E0
Zs

q00 � v;

(33)

with

L S ¼ 1
s

E0 .þ 2u � vþ ht v2 � 3
2

� �
þ 4qt � v

15
v2 � 5

2

� �" #
� h0

( )
:

(34)

The dimensionless mean relaxation time, which has the order of the
Knudsen number, is expressed as

s ¼ 2Knffiffiffi
p

p ¼ l T0ð Þ
n0L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mkBT0

r
: (35)

The perturbations of macroscopic flow properties from the global equi-
librium state are calculated from the velocity moments of h0 and h2,

.; u; ht ; qt½ � ¼
ð

1;v;
2
3
v2 � 1;v v2 � 5

2

� �� �
h0dv;

hr ; qr½ � ¼
ð

2
d
; v

� �
h2dv:

(36)

FIG. 2. The analytical estimation of TJCs in the fully diffuse gas–surface interaction
(30) with a0 ¼ 1: influence of the Eucken factors, ft varies from 1.5 to 2.5. (a)
Z¼ 3, d¼ 2, and feu¼ 2; and (b) Z¼ 2, d¼ 3, and feu¼ 1.5.
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We have mentioned that the kinetic model is reduced to the
Shakhov model for monatomic gases in the limit of Z ! 1.
However, it may bring errors due to the fact that a velocity-
independent relaxation time s is used. To improve the model accuracy,
Wu proposed to recover the realistic relaxation time by replacing the
elastic collision partL S with the Boltzmann collision operator,33

L B ¼
ð ð

B E0 v0ð Þh0 v0
	


 �þ E0 v0
	


 �
h0 v0ð Þ

h
�E0 vð Þh0 v	ð Þ � E0 v	ð Þh0 vð Þ

i
dXdv	; (37)

where B is the collision kernel, v, v	; v0, and v0	 are the pre-/post-
velocities of a collision pair, and X is the solid angle. The collision ker-
nel is determined by the intermolecular potential. In this paper, we
employ the inverse power law, where the shear viscosity is a single
power-law function of temperature, i.e., l / Tx

t with x being the vis-
cosity exponent.

Under the Maxwell boundary condition with a constant accom-
modation coefficient, the perturbed distribution functions at the walls
(x1 ¼ 0 or 1) are determined as

h0 vð Þ ¼ a0E0 6Dh v2 � 2ð Þ � 2
ffiffiffi
p

p Ð
v0 �n<0v

0 � nh0 v0ð Þdv0
h i

þ 1� a0ð Þh0 v� 2 v � nð Þnð Þ;

h2 vð Þ ¼ 6a0E0
d
2
Dhþ 1� a0ð Þh2 v� 2 v � nð Þnð Þ;

(38)

where Dh ¼ DT=T0 is the perturbation of wall temperature.

B. Determination of TJC and Knudsen layer function

In order to avoid overlap of the two Knudsen layers adjacent to
the plates, we set a small Knudsen number, with s ¼ 0:01. The dis-
crete velocity method is employed to deterministically solve the kinetic
equations (32), where the steady-state solution is obtained using the
general synthetic iterative scheme40–42 that is developed by the authors
to improve inefficiency and inaccuracy of the conventional iterative
scheme for small-Knudsen-number flows. In the scheme, a set of syn-
thetic equations governing the evolution of macroscopic flow proper-
ties are simultaneously solved with the kinetic equations, which help
accelerate the evolution of distribution functions. The kinetic equa-
tions, in turn, provide high-order terms for the constitutive relations
in the macroscopic equations and the boundary condition as well. It
has been rigorously proven that the scheme can achieve fast conver-
gence, i.e., obtain steady-state solution within dozen of iterations over
the whole range of Knudsen numbers, retain accuracy in the high
Knudsen number region, and asymptotically preserve the
Navier–Stokes solution on very coarse spatial grid when Kn ! 0.
Hence, it is efficient and accurate to simulate the current multiscale
problem, possessing the hydrodynamic scale in the bulk region and
kinetic scale in the Knudsen layer. The details of the numerical scheme
for linear flows of molecular gases can be found in Ref. 42. We will
omit the description in the present paper and leave some remarks on
the accuracy of the computation in the Appendix.

The TJC is calculated from the linear fitting of the temperature
profile, named as hNS, in the bulk region (x1 2 ½0:3; 0:7�), according to
its definition (1) as

fT ¼ � kþ Dh
2ks

; (39)

where k is the slope coefficient in the linear fitting,

hNS x1ð Þ ¼ k x1 � 1
2

� �
Dh: (40)

The Knudsen lay function, i.e., defective temperatureH, is obtained by
comparing the kinetic solution and the linear fitting within the
Knudsen layer,

H x1ð Þ ¼ 1
ksDh

hNS � hð Þ: (41)

We will separately consider the TJC (Knudsen layer function) for the
translational and rotational temperatures, which are denoted as fTt

(Ht) and fTr
(Hr), respectively, in Sec. V.

V. RESULTS AND DISCUSSION

We first present results in monatomic gases that are obtained by
solving the linearized Boltzmann equation. The results will be com-
pared to the data in the literature to show the accuracy of our solu-
tions. Then, elaborate results and discussions that will be given for
molecular gases.

A. Temperature jump in monatomic gas

We consider two different cases, choosing x ¼ 0:5 and x ¼ 1:0,
which correspond to the hard-sphere andMaxwellian molecular mod-
els. A more realistic potential will lead to a result between the two sit-
uations.43 The boundary condition is the fully diffuse wall with a0 ¼ 1
in (38). The obtained TJCs are listed in Table I, while the Knudsen
layer functions are plotted in Fig. 3. The solutions for hard-sphere
molecules obtained by Sone et al.9 who used a finite different scheme
to directly solve the linear Boltzmann equation has also been included.
Note that due to a different definition of normalization, Sone’s original
results are multiplied by 4/5 to make equivalent to our solutions. It is
observed that our results have good agreement with the reference data,
where the relative difference between the TJCs for x ¼ 0:5 is about
0.67%. Just as that have been found in the literature, the temperature
jump is not sensitive to the intermolecular potential: the TJC rises with
a magnitude of 0.07 from the hard-sphere model to the Maxwell
model; and the maximum absolute difference in the Knudsen layer
function is about 0.13.

B. Temperature jump in molecular gas

For reliable results, we need to determine the freely adjustable
parameters in the kinetic model. A proper value for the rotational col-
lision number can be obtained to recover the experimentally measured

TABLE I. Temperature jump coefficient fT in monatomic gases. The inverse law
potential is considered with the viscosity component setting as x ¼ 0:5 and
x ¼ 1:0.

x 0.5 1.0

f T 1.9321 2.0058
fT from Ref. 9 1.9194 � � �
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shear and bulk viscosities. However, it is difficult to determine the
thermal relaxation rates from an experimental measurement of the
thermal conductivity, since only the total conductivity is straightfor-
wardly obtained. In this paper, we use the values of Z and Aij extracted
from the DSMC method. In the DSMC equipping with the variable-
soft-sphere model43 and the Borgnakke and Larsen44 collision rule for
molecular gases, the rotational collision number is the only factor that
can modify the thermal relaxation rates once the shear viscosity and
self-diffusivity are fixed; by monitoring the relaxation of heat fluxes in
homogeneous systems, the correlations of Aij against Z can be
obtained.25 It is shown that all the parameters Aij are inversely propor-
tional to the rotational collision number. By matching the total ther-
mal conductivity, or equivalently feu¼ 1.993 at T0 ¼ 300K measured
in the Rayleigh–Brillouin scattering in rarefied gases,24 the parameters
for nitrogen are given as Z¼ 2.667, Att¼ 0.786,
Atr ¼ �0:201; Art ¼ �0:059, and Arr¼ 0.842, resulting in ft ¼ 2:365
and fr ¼ 1:435. Considering that both the bulk viscosity and thermal
conductivity are determined by the collision number in the DSMC,
the given value of Zmay not lead to the correct bulk viscosity.

We have shown that the molecular interaction in elastic collision
does not significantly influence the TJC and the Knudsen layer func-
tion. Now, we are investigating how the unique transport processes in
molecular gases affect the temperature jump. We first consider
the influence of the temperature relaxation (6) by changing the rota-
tional collision number. The gas is nitrogen with x ¼ 0:74, d¼ 2,
ft ¼ 2:365, and fr ¼ 1:435 (or Att¼ 0.786, Atr ¼ �0:201; Art

¼ �0:059, and Arr¼ 0.842). We set three different values of Z as 1.0,
2.667, and 5.0. The boundary condition is set as fully diffuse reflection.
The obtained temperature jump coefficients are listed in Table II. It is
found that the three TJCs have almost the same value of about 1.73
due to the fact that the translational, rotational, and overall tempera-
tures coincide in the bulk region, i.e., outside of the Knudsen layer.
The rotational collision number Z has hardly any influence on the
TJC. The translational and rotational Knudsen layer functions for
Z¼ 1.0 and Z¼ 5.0 are plotted in Fig. 4, which demonstrates that the
rarefied effect in the Knudsen layer leads to the deviations between the
translational and internal temperatures. When Z¼ 1.0, i.e., inelastic
collisions that the exchange of the translational and internal energies
frequently takes place,Ht andHr are close, while as Z increases to 5.0,

i.e., the probability for inelastic collisions becomes smaller, the discrep-
ancy between Ht and Hr increases. However, the variation is not
significant.

Then, we study the influence of thermal relaxations (7) by
changing the relaxation rates and retaining Z¼ 2.667. The thermal
conductivities will vary with Aij; therefore, in order to make duly com-
parisons, the total Eucken factor feu¼ 1.993 is kept as the experimental
value for nitrogen at T0 ¼ 300K. When we alter the values of ft and fr,
the cross terms Atr and Art are also fixed, while the diagonal terms Att

and Arr will change correspondingly. Figure 5(a) displays the TJCs
against the translational Eucken factor, where the three lines relate to
the three groups of cross terms: Atr ¼ Art ¼ 0:0 without cross
exchanges; Atr ¼ �0:201 and Art ¼ �0:059 the ones extracted from
the DSMC; Atr ¼ �1:005 and Art � 0:295 that are five times larger,
in magnitude, than the previous group, representing intensified cross
exchanges. Note that the TJCs for different temperatures are almost
the same; thus, only the values of fT are plotted. The TJC first falls and
then slightly rises as ft increases (or fr decreases), and the minimum
value that is about 1.72 appears when ft is around 2:2 
 2:25. Large
values of TJC occur when ft (fr) is relative small (large). When ft varies
from 1.5 to 2.5, the largest TJC is about 110%–115% of the minimum
one. For a fixed group of ft and fr, the TJC slightly changes with the
thermal relaxation rates, where the variation in magnitude is smaller
than 0.1. The Knudsen layer functions are plotted in Fig. 5(b) for
Atr ¼ �0:201 and Art ¼ �0:059. It is shown that, when ft ¼ 1:5 and
fr ¼ 2:733, the translational Knudsen layer function Ht is larger than

FIG. 3. Comparison of the Knudsen layer functions in monatomic gases. Lines are
our results obtained by solving the linearized Boltzmann equation. Markers illus-
trates Sone’s results9 for hard-sphere molecules.

TABLE II. Temperature jump coefficients in molecular gases with different rotational
collision numbers Z. The other parameters are d¼ 2, x ¼ 0:74, Att¼ 0.786,
Atr ¼ �0:201; Art ¼ �0:059, and Arr¼ 0.842; thus, ft ¼ 2:365; fr ¼ 1:435, and
feu¼ 1.993. The fully diffuse gas–wall interaction is considered.

Z 1.0 2.667 5.0

fTt
1.7300 1.7303 1.7305

fTr
1.7300 1.7302 1.7303

fT 1.7300 1.7303 1.7304

FIG. 4. The Knudsen layer functions for the translational and rotational tempera-
tures when Z¼ 1.0 and Z¼ 5.0. The other parameters are d¼ 2, x ¼ 0:74,
Att¼ 0.786, Atr ¼ �0:201; Art ¼ �0:059, and Arr¼ 0.842; thus, ft ¼ 2:365; fr
¼ 1:435, and feu¼ 1.993. The fully diffuse gas–wall interaction is considered.
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the rotational Hr, which implies that Tt in the Knudsen layer deviates
more from the Navier–Stokes solution; while when ft increases to 2.5
and fr reduces, the situation reverses and now Hr is larger. The two
Knudsen layer functions meet at around ft ’ 2:20, which corresponds
to that when the minimum temperature jump coefficient emerges.

Compared to monatomic gases, the TJC in molecular gases is
generally smaller.

C. The minimum TJC

We have shown that for a selected gas species with a certain
internal degree of freedom and a fixed total thermal conductivity, the
values of the TJC and Knudsen layer function depend on the relative
quantity of the translational contribution in the total thermal conduc-
tivity to the internal one. When the translational contribution ft is rela-
tively larger, the translational Knudsen layer function is smaller than
the internal one, i.e., the translational temperature is closer to the
extrapolated Navier–Stokes solution in the Knudsen layer; the situa-
tion reverses when the internal contribution becomes relatively larger.

A minimum TJC can be found when the translational and internal
Knudsen layer functions overlap; and the larger the differences
between the translational and rotational Knudsen layer functions, the
larger the TJC.

We can give an estimation at which value of ft the minimum TJC
appears sujected to the classical Maxwell gas–surface interaction. Since
the translational and internal Knudsen functions are coincident, the
analytical TJCs (30) that exclude the effect from the Knudsen layer
should be equal to each other, see the dotted–dashed line in Fig. 1, cor-
responding to the crossover points of the three lines in 2(a) and 2(b).
Therefore, from (30), we find that the minimum TJC emerges when

ft ¼ 4
3
fr ¼ 4 3þ dð Þ

3 4þ dð Þ feu; (42)

which is independent of the rotational collision number and the
accommodation coefficient. This is further confirmed from the
numerical results illustrated in Fig. 6.

D. Correction to the analytical TJC

Comparing the numerical results of the TJC presented in this sec-
tion to the ones obtained from the analytical formulations given in
Sec. III, we can find that the estimate (30) in which the contribution
from the Knudsen layer to the temperature jump has been excluded,
possessing large errors. The main errors are

1. The rotational collision number may have strong effect on the
value of the analytical translational and internal TJCs, making
them deviate a lot from the analytical overall TJC. However, the
actual translational, internal, and overall TJCs are almost identi-
cal due to the fact that the three temperatures overlap in the bulk
region at small Knudsen numbers. The actual TJC is indepen-
dent on the rotational collision number. Although the analytical
overall TJC has this feature, it is much smaller than the actual
TJC.

2. Under the classical Maxwell boundary condition with a constant
accommodation coefficient and for a certain value of total
Eucken factor, the analytical formulation cannot reproduce the
trend of the variation of TJC against the translational Eucken
factor that is the TJC first falls to a minimum value and then
rises.

To correct the analytical estimation, we propose a new formula-
tion for the TJC in molecular gases read as

fT ¼ 2� a0
a0

1þ 0:1621a0ð Þ
ffiffiffi
p

p
8

� 4 3þ dð Þ
4þ d

feu þ
 4
4þ d

feu � 3
3þ d

ft


 !

; (43)

which is free of Z as well as the thermal relaxation rates Aij and can

produce the minimum TJC at ft ¼ 4ð3þdÞ
3ð4þdÞ feu. It can also be shown that

this new formulation is reduced to (4) for monatomic gases when
d¼ 0 and feu ¼ ft ¼ 5

2. The comparisons between the new formulated
TJC and the numerical solutions are plotted in Fig. 7. The formulation
shows high accuracy especially around the minimum values, while the
deviation becomes slightly larger when the TJC is getting higher. This

FIG. 5. Influence of the translational and rotational Eucken factors when the total is
fixed feu¼ 1.993: (a) temperature jump coefficient displaying the influence under
three different groups of Atr and Art. (b) Knudsen layer functions displaying the influ-
ence when Atr ¼ �0:201 and Art ¼ �0:059. The other gas parameters are
Z¼ 2.667, d¼ 2, and x ¼ 0:74. The fully diffuse gas–wall interaction is
considered.
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can be explained by the neglect of the higher order terms of DTt=r in
(29), which leads to the linear dependence of TJC on the Eucken fac-
tors. While it can be seen from Fig. 7 that the numerical results of TJC
show a slight nonlinear dependence on ft. Nevertheless, for all the con-
sidered cases, the relative differences between the TJCs calculated from
(43) and the numerical ones are not larger than 5.78%.

VI. CONCLUSIONS

We have investigated the temperature jump problem in rarefied
molecular (diatomic and polyatomic) gases with excited rotational
energy on the basis of a kinetic model that is capable of realizing the
temperature relaxation described by the Landau relation and the gen-
eral thermal relaxation predicted by the Wang–Chang Uhlenbeck
equation. In the kinetic model, the relaxation rates of these unique
transport processes in molecular gases can be freely adjustable, and the
influences of which on the temperature jump have been separately
investigated. Analytical estimations of the temperature jump coeffi-
cient subject to the Maxwell’s gas–surface interaction with a constant
accommodation coefficient have been obtained by assuming a first-

FIG. 7. A new formulation (43) is proposed to estimate the TJC in molecular gases
under the classical Maxwell gas–surface interaction with a constant accommodation
coefficient a0. Comparison between the new estimated (solid lines) and numerical
(markers) results: (a) d¼ 2, Z¼ 2.667, feu¼ 1.993, Atr ¼ �0:201, and
Art ¼ �0:059; and (b) d¼ 3, Z¼ 3, feu¼ 1.5, and Atr ¼ Art ¼ 0.

FIG. 6. Under the classical Maxwell’s boundary condition with a constant
accommodation coefficient, a minimum TJC can be found when the translational
and internal components ft and fr vary but the total Eucken factor feu is fixed. (a)
and (b) The value of ft at which the minimum TJC appears is about
ft ¼ 4ð3þdÞ

3ð4þdÞ feu, which does not depend on the rotational collision number Z and
the accommodation coefficient a0. (c) The Knudsen layer functions of the trans-
lational and internal temperatures are coincident at the minimum TJC. For cases
of d¼ 2 and feu¼ 1.993, we have set Z¼ 2.667, Atr ¼ �0:201, and
Art ¼ �0:059. For cases of d¼ 3 and feu¼ 1.5, we have set Z¼ 3 and
Atr ¼ Art ¼ 0:0. In (c), a0 ¼ 1.
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order Chapman–Enskog velocity-energy distribution function. The
analytical TJCs are functions of the accommodation coefficient,
the internal degree of freedom, the rotational collision number, and
the Eucken factor and its translational and internal components. Due
to the fact that the Knudsen layer cannot be resolved from the first-
order truncated distribution function, the analytical estimations may
possess larger errors. The temperature jump coefficient and the
Knudsen layer function have been numerically calculated by directly
solving the kinetic model for the one-dimensional steady conductive
problem. Some conclusions can be obtained from the numerical results:

1. Compared to the monatomic gas, the temperature jump coeffi-
cient is generally smaller in molecular gases, where the energy
exchange between translational and internal motions occurs.

2. The temperature jump coefficients related to the translational,
internal, and overall temperatures are coincident due to the fact
that the three temperatures overlap in the bulk region when the
Knudsen number is small. However, the corresponding Knudsen
layers may be quite different due to the rarefaction effect.

3. The intermolecular potential for the elastic collisions has a lim-
ited influence on the temperature jump.

4. The temperature jump coefficient is almost independent on the
rotational collision number. However, the difference between the
translational and internal Knudsen layer functions enlarges as
the rotational collision number increases, although the variation
is not significant.

5. The thermal relaxation processes significantly affect the tempera-
ture jump. The value of the temperature jump coefficient is
determined by the relative quantity of the translational compo-
nents in the total thermal conductive to the rotational one. For a
certain gas species with a fixed total Eucken factor, the tempera-
ture jump coefficient and the Knudsen layer functions vary with
the translational Eucken factor. A minimum value of the temper-
ature jump coefficient emerges when the Eucken factors are

ft ¼ 4
3 fr ¼ 4ð3þdÞ

3ð4þdÞ feu, where the translational and internal

Knudsen layer functions are coincident.

Based on the numerical results, a new formulation has been pro-
posed to estimate the temperature jump coefficient under the classical
Maxwell boundary condition, which is a function of the internal
degree of freedom, the total Eucken factor and its translational compo-
nent, and the constant accommodation coefficient. The formulation is
reduced to the one for monatomic gases in the limit when the transla-
tional–rotational energy exchange vanishes.

ACKNOWLEDGMENTS

This work has been financially supported by the National
Natural Science Foundation of China under Grant No. 12172162.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

NOMENCLATURE

A Matrix of relaxation rates
C Peculiar velocity
d Rotational degrees of freedom

Et ; Er Equilibrium distribution of velocity and rotational
energy

f Velocity-energy distribution function
ft ; fr ; feu Translational, rotational, and total Eucken factor

fw Velocity-energy distribution at the wall
f0 Equilibrium velocity-energy distribution function
f1 Perturbed distribution function

f þ; f � Incident and reflected distribution function
G; R Reduced velocity distribution functions
gt; gr Reference velocity distribution functions

h0; h1; h2 Dimensionless perturbed velocity distribution
functions

I Molecular rotational energy
I0 Incident molecular rotational energy
k Slope coefficient in the linear fitting of temperature
kB Boltzmann constant
Kn Knudsen number
L Characteristic flow length

L S Relaxation approximation of elastic collision
L B Boltzmann operator

L 0; L 2 Collision terms in the linear system
m Molecular mass
n Number density
n Outward normal vector at the wall
n0 Reference number density

pt ; pr; p Translational, rotational, and overall pressure
Pr Prandtl number

Q0; Q00 Linear combinations of Qt and Qr
q0; q00 Linear combinations of qt and qr
Qt ; Qr Translational and rotational heat fluxes
qt ; qr Dimensionless translational and rotational heat

fluxes
R Reflection kernel
t̂ ; t Time, dimensionless time
Te Linearly extrapolated temperature

Tt ; Tr ; T Translational, rotational, and overall temperature
Tw Wall temperature
T0 Reference temperature

U ; u Bulk velocity, dimensionless velocity
V Molecular translational velocity
V 0 Incident molecular translational velocity
vm Most probable molecular speed
X; x Location, dimensionless location

Z Rotational collision number
a0 Accommodation coefficient
c Specific heat ratio

Dh Dimensionless perturbed wall temperature
DTt ; DTr Translational and rotational temperatures jump

fT Temperature jump coefficient
f	Tt

; f	Tr
; f	T Analytical TJCs
H Knudsen lay function (defective temperature)

hNS Linear fitting of the temperature profile
ht ; hr ; h Dimensionless perturbed temperature
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jt ; jr; j Translational, rotational, and total thermal conductivity
k Mean free path
l Shear viscosity
lb Bulk viscosity
q Dimensionless perturbed number density

ŝ; s Relaxation time, dimensionless relaxation time
x Viscosity index

APPENDIX: ON THE ACCURACY OF THE NUMERICAL
RESULTS

In this section, we present some analyses about the accuracy of
our numerical results. To find the solution of the heat conduction
problem, the kinetic model equation (32) is solved by the discrete
velocity method combining with the general synthetic iterative
scheme. The spatial derivatives in the governing equations are
approximated by the fourth-order discontinuous Galerkin method
on the one-dimensional domain partitioned by N linear segments.
The cell size is refined near the solid plates. The integrals in the
molecular velocity space are approximated by the first-order quad-
rature rule. Nv ¼ N1

v � N2
v � N3

v discrete velocities are allocated
over a truncated domain of ½�6; 6�3, where v1 is discretized by non-
uniform nodes with refinement around v1 ¼ 0, while v2 and v3 are
discretized by uniform nodes. The means to partition the spatial
and velocity spaces can be found in Ref. 42. The linearized
Boltzmann collision operator is evaluated by the fast spectral
method using Nf ¼ N1

f � N2
f � N3

f uniform frequencies. The details
of the fast spectral method can be found in Refs. 45 and 46. When
conducting the iterative scheme to find the steady-state solution,
the iteration terminates when the maximum residue in flow density,
temperature, and heat fluxes is smaller than 10�6.

We carried out computations on different grid systems and
confirmed that the obtained results are close to each other. The
obtained temperature jump coefficients from different cases,

1. No. 1: Z¼ 2.667, ft ¼ 2:365, feu¼ 1.993, Atr ¼ �0:201, and
Art ¼ �0:059;

2. No. 2: Z¼ 2.667, ft ¼ 1:5, feu¼ 1.993, and Atr ¼ Art ¼ 0:0;
3. No. 3: Z¼ 2.667, ft ¼ 2:5, feu¼ 1.993, and Atr ¼ Art ¼ 0:0;
4. No. 4: Z¼ 2.667, ft ¼ 1:5, feu¼ 1.993, Atr ¼ �1:005; and

Art ¼ �0:295; and

5. No. 5: Z¼ 2.667, ft ¼ 2:5, feu¼ 1.993, Atr ¼ �1:005; and
Art ¼ �0:295;

are listed in Table III. The results presented in Sec. V are obtained
withN¼ 128, Nv ¼ 96� 24� 24, andNf ¼ 48� 24� 24.
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