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Abstract

The in-depth knowledge of rarefied gas dynamics is crucial to address challenges in a wide range of engineering problems,
here gas flows are usually multiscale, i.e., covering a wide range of Knudsen numbers. As the traditional Navier–Stokes

quations fail, gas kinetic equations are required to model the flows. So far, very few numerical methods are designed to
fficiently solve the multiscale gas dynamics and reveal the role of internal degrees of freedom of gas molecules. In this work,
general synthetic iterative scheme (GSIS) is proposed to find steady-state solutions of the gas kinetic equations for molecular

as flows accurately and efficiently, where the gas kinetic equations are solved together with the macroscopic synthetic equations
hat expedite solutions towards the steady state. In the macroscopic synthetic equations, while the momentum equation is the
ame as that used in the GSIS for monatomic gas, two energy equations are introduced here for polyatomic gases: one is for
he translational energy and the other for the internal energy; these equations are derived exactly from the gas kinetic equations
ence no approximation is made in final solutions. The Fourier stability analysis is performed to show that the GSIS permits
ast convergence to steady-state solutions in the entire flow regime; meanwhile the asymptotic analysis shows that the GSIS
ecovers the Navier–Stokes equations when the Knudsen number is small, even on the spatial grid with cell size much larger
han the molecular mean free path. With all these unique features, several challenging numerical examples are given to show
hat the proposed GSIS is a promising tool to simulate multiscale molecular gas flows and investigate the effects of internal
egrees of freedom.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In-depth knowledge of the rarefied gas dynamics is crucial to address scientific and engineering challenges in a
ide range of applications, such as high-altitude space vehicles, micro-electromechanical systems, unconventional
as production, and vacuum science. For instance, in space exploration, understanding the physico-chemical
henomena that dictate the flow around re-entry capsules allows optimal design of aerodynamic shape and heat

∗ Corresponding author.
E-mail address: wul@sustech.edu.cn (L. Wu).

1 Now at School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK.
https://doi.org/10.1016/j.cma.2020.113548
0045-7825/ c⃝ 2020 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113548
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113548&domain=pdf
mailto:wul@sustech.edu.cn
https://doi.org/10.1016/j.cma.2020.113548


W. Su, Y. Zhang and L. Wu Computer Methods in Applied Mechanics and Engineering 373 (2021) 113548

r

s
t

Fig. 1. (a) Schematic of flow physics around a re-entry capsule. (b) Schematic diagram of internal excitation, dissociation, ionization and
adiation of the nitrogen species.

hield to fulfill the payload and cost budget, key to success of ambitious space missions. In realistic circumstances,
he dilute gas flows are usually multiscale in time and/or space, which span a wide range of Knudsen numbers (K n,

defined as the ratio of the molecular mean free path to a characteristic flow length, or the ratio of a characteristic flow
frequency to the molecular mean collision frequency). Fig. 1(a) illustrates the complexity of flow physics around a
re-entry capsule, where the space vehicle moves with considerable velocity varying from 7.8 km/s when returning
from the International Space Station to more than 12 km/s for interplanetary travels. Due to the acute interaction
with the atmosphere, a strong bow shock wave is generated in front of the capsule; meanwhile supersonic expansion,
flow separation, re-circulation, and re-compression take place as the flow passes through it. Behind the shock wave,
a massive amount of the kinetic energy of free stream is converted into the internal energy of surrounding gas,
which results in intense convective and radiative heating to the space vehicle. The intermolecular collisions also
promote energy exchanges between the translational and internal (i.e. rotational, vibrational and electronic) modes;
and eventually leads to nonequilibrium chemical reactions including dissociation and ionization, where some species
of the products are strong radiators, taken the nitrogen as an example in Fig. 1(b). Depending on the flight altitude,
atmospheric re-entry usually occurs in the continuum/near-continuum flow regimes [1], e.g., at 100 km for Earth,
however the continuum-fluid hypothesis breaks down in the near wake of space vehicle and the kinetic theory is
needed to describe the rarefied gas dynamics. Although considerable progress has been accomplished, there remain
large uncertainties associated with the approaches to depict the nonequilibrium dynamics of molecular gas flows
with such complexities.

Continuing efforts are required to develop accurate physical models and computationally efficient methods for
multiscale flow simulations. Benefited from the technological advances in high-performance computing, better
understanding of rarefied gas dynamics has been achieved through solving the Boltzmann equation in the framework
of gas kinetic theory [2,3]. In particular, the direct simulation Monte Carlo (DSMC) method [4], which is equivalent
to the solution of Boltzmann equation for monatomic gas [5], has achieved overwhelming success in simulating
hypersonic flows due to its unconditional stability. To enable DSMC to simulate low-speed flows, the information-
preserved and low-variance DSMC methods were developed [6,7]. However, the DSMC becomes prohibitively
expensive as the gas flow approaches the near-continuum regime. This is because the streaming and collision of gas
molecules are decoupled on the length and time scales comparable to the cell size of spatial grid and simulation time
step which, in order to suppress the numerical dissipation, are required to be smaller than the molecular mean free
path and the mean collision time [8], respectively. Moreover, the DSMC has explicit time marching, where the time
step is restricted by the physical collision time such that all the computations are unsteady and the steady solution
is obtained as the long time asymptotic state of the transient flow [9]. Since the information (e.g. perturbation in
the flow field) propagation relies on molecular streaming, the number of time steps to reach steady state becomes
extremely large when K n becomes small.

On the other hand, phenomenological models are introduced in the DSMC method to describe the intermolecular
collisions and internal relaxation of molecular gas. Some principles need to be satisfied to guarantee accuracy, one
of which is that the experimental values of transport coefficients should be recovered. For monatomic gases, the
2
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variable-hard-sphere and variable-soft-sphere models [4,10] can produce correct values of the shear viscosity, the
thermal conductivity and the self-diffusion coefficient. When considering molecular gas flow, additional transport
coefficients including the bulk viscosity as well as the translational, rotational and vibrational thermal conductivities
arise due to energy exchanges between the translational and internal modes. The widely used Borgnakke & Larsen
phenomenological model [11] is able to recover the energy exchange rates so that the bulk viscosity can be
correctly obtained, but it has no mechanism to reproduce the total thermal conductivity and its components [12].
These physical parameters, however, affect the dynamics of molecular gas flows under nonequilibrium conditions
(e.g. shock wave structure [13], line shape of the Rayleigh–Brillouin scattering [12] and thermal transpiration in
micro devices) if the translational thermal conductivity is not correct, and even under equilibrium conditions if the
total thermal conductivity is not correct.

The gas kinetic equations can be alternatively solved by deterministic approaches [14–16]. When the Boltzmann
quation is extended to the Wang-Chang & Uhlenbeck equation [17] for molecular gases, additional internal degrees
f freedom yields a collision operator that is much more complicated than the Boltzmann collision operator for
onatomic gases. In practice, gas kinetic models are introduced to reduce the computational complexity in the
ang-Chang & Uhlenbeck equation [18–23], some of them are able to recover all the transport coefficients.
onventional techniques of computational fluid dynamics are then utilized to directly discretize the governing
quation over a computational grid. Although high-order and implicit schemes would be preferred, most of the
olvers treat the movement and collision of gas molecules in a decoupled manner just as that in the DSMC. As a
onsequence, the restriction on spatial cell size and computational time step still exists [24]. Meanwhile, information
s exchanged through evolution of gas molecular system, thus the conventional iterative scheme (CIS) used by the
eterministic solvers for finding steady-state solutions also converges extremely slowly when K n is small [25,26].

Inspired by the fast iterative method originally devised to accelerate the simulation of radiation transport
roblems [27,28], the present authors have developed a general synthetic iterative scheme (GSIS) to tackle the
ifficulties of CIS for general rarefied gas dynamics rather than specific problems [25,29–32], such that steady-
tate solutions are obtained within dozens of iterations at any Knudsen number [33,34]. The key ingredient of
SIS is that macroscopic synthetic equations are simultaneously solved with the gas kinetic equation, from which

he macroscopic flow properties are obtained to guide the evolution of gas molecular system thus achieving fast
onvergence. Moreover, the GSIS asymptotically preserves the Navier–Stokes equations at the continuum limit [35],
o that the restriction on spatial grid cell size and/or time step is eliminated. These advantages make the GSIS a
romising tool for simulation of multiscale rarefied gas flows [36].

In this work, we will further explore the GSIS in simulating molecular gas flows, where energy exchanges
etween the translation and internal modes bring new flow physics and pose difficulties to formulate macroscopic
ynthetic equations. We will establish the GSIS based on the kinetic model developed by Wu et al. for molecular
ases considering rotational degrees of freedom [37]. This model has the following advantages: (1) it is reduced
o the Boltzmann equation for monatomic gas when the exchange of translational and rotational energies is absent,
o that the effect of intermolecular potential and the shear viscosity can be considered; (2) transport coefficients
ncluding the bulk viscosity, the translational and rotational thermal conductivities can be freely adjusted to the
xperimental measured values; (3) although from Fig. 1 we see that there are many internal modes, we believe
he understanding of rotational mode is the first crucial step to study the rarefied molecular gas flows. Also, the

ethodology can be straightforwardly applied to kinetic models with more internal modes [22,23]. In the following
ections we will only present the extended GSIS for linearized problems, as these problems permit the linear Fourier
tability analysis, hence we will know the property of GSIS in detail. If the method works for linear problems,
ccording to our recent work [34], it should also work for nonlinear problems.

The remainder of the paper is organized as follows. The kinetic model for molecular gas and the CIS are given in
ection 2, while the formulation and procedure of GSIS for molecular gas are presented in Section 3. In Section 4,
e rigorously analyze the fast convergence and asymptotic preserving of GSIS by conducting the Fourier stability

nalysis and the Chapman–Enskog expansion. Five different thermal driven flows are simulated in Section 5 to
emonstrate performance of the proposed method. Section 6 concludes the paper.

. Gas kinetic equations and conventional iterative scheme

For simplicity, we consider a molecular gas with three translational and dr rotational degrees of freedom, while its
vibrational energy is not excited. In gas kinetic theory, the dilute gas system is described by the distribution function
3
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f (t, x, v, I ), where t is the time, x = (x1, x2, x3) is the Cartesian coordinate, v = (v1, v2, v3) is the translational
elocity of gas molecules, and I is the rotational energy [37]. In order to improve computational efficiency, two
educed velocity distribution functions G (t, x, v) =

∫
∞

0 f (t, x, v, I ) dI and R (t, x, v) =
∫

∞

0 f (t, x, v, I ) I 2/dr dI
re introduced to eliminate the dependence on I . We further assume the gas flow is driven by sufficiently small
erturbation, hence the reduced velocity distribution functions deviate slightly from the global equilibrium, which
an be linearized as

G (t, x, v) = Feq (v)+ h0 (t, x, v) ,

R (t, x, v) =
dr

2
Feq (v)+ h1 (t, x, v) , (1)

where the equilibrium distribution function is given by

Feq = π−3/2 exp
(
−|v|

2) , (2)

nd the small perturbations h0, h1 satisfy |h0/Feq | ≪ 1 and |h1/Feq | ≪ 1. On introducing h2 = h1 − dr h0/2, the
volution of the linear gas system is eventually described by h0 and h2, whose governing equations are written
s [37]

∂h0

∂t
+ v ·

∂h0

∂x
= C0, (3a)

∂h2

∂t
+ v ·

∂h2

∂x
= C2, (3b)

where the collision operators C0 and C2 take the forms

C0 = LBCO +
Feq

Zτ

[
(T − Tt )

(
|v|

2
−

3
2

)
+

4 (ω0 − 1)
15

q t · v

(
|v|

2
−

5
2

)]
,

C2 =
1
τ

(
dr

2
Tr Feq − h2

)
+

2 (Z + ω1 − 1) (1 − δ)

Zτ
qr · vFeq +

dr

2Zτ
(T − Tr ) Feq .

(4)

ere LBCO is the linearized Boltzmann collision operator [38], which models the elastic collision that conserves the
inetic energy. LBCO is a function of Feq , h0, and the intermolecular potential; we consider the inverse power-law
otential, where the shear viscosity is a single power-law function of temperature, i.e., µ ∝ T ω

t with ω the viscosity
ndex and Tt the translational temperature [39]. The other terms in C0 and C2 are the inelastic collision operators that
escribe the energy exchanges between translational and rotational motions, where T , Tr , q t and qr are the overall

and rotational temperatures, heat fluxes related to the translational and rotational motions, respectively; τ is the
mean collision time and Z is the rotational collision number, such that the translational and rotational temperatures
relax towards the overall temperature as ∂Tt/∂t = (T − Tt ) /Zτ and ∂Tr/∂t = (T − Tr ) /Zτ , respectively. These
energy exchanges are the origin of the bulk viscosity that is absent in dilute monatomic gases. δ is the Schmidt
number defined as the ratio of kinematic viscosity and mass diffusivity; it appears as the transport of internal energy
occurs mainly due to the diffusion of gas molecules. The value of δ depends on the intermolecular potential and
usually in the range of 1/1.2 to 1/1.55 when the viscosity index ω varies from 0.5 to 1. ω0 and ω1 relate to the
translational (κt ) and rotational (κr ) heat conductivities which, according to the Chapman–Enskog expansion [40],
re given as follows

q t = −
15
8

(
1 +

1 − ω0

2Z

)−1

τ∇T ≡ −κtτ∇T,

qr = −
dr

4

[
δ +

(1 − ω1) (1 − δ)

Z

]−1

τ∇T ≡ −κrτ∇T .

(5)

The macroscopic quantities of interest are flow density ρ, bulk velocity U , stress tensor σi j , translational
(rotational) temperature T (T ), and translational (rotational) heat flux q (q ), which are obtained from velocity
t r t r

4
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moments of the reduced velocity distribution functions as

ρ =

∫
h0dv, U =

∫
vh0dv, σi j = 2

∫ (
viv j −

|v|
2

3
δi j

)
h0dv,

Tt =

∫ (
2
3
|v|

2
− 1

)
h0dv, Tr =

2
dr

∫
h2dv,

q t =

∫
v

(
|v|

2
−

5
2

)
h1dv, qr =

∫
vh2dv,

(6)

here δi j is the Kronecker delta function and i, j = 1, 2, 3 represent the three orthogonal directions in the
artesian coordinates. The overall temperature is the weighted sum of the translational and rotational temperatures:

T = (3Tt + dr Tr ) / (3 + dr ).
Dimensionless variables have been used in the above equations: x is normalized by the characteristic flow length

H ; v and U are normalized by the most probable speed of gas molecules vm =
√

2kBT0/m with kB being the
oltzmann constant, T0 the reference temperature, and m the molecular mass; t is normalized by H/vm ; Feq and

h0 are normalized by n0/v
3
m , and h2 is normalized by n0kB T0/v

3
m , with n0 being the reference number density of

as molecules; ρ is normalized by n0; σi j is normalized by n0kBT0; temperatures are normalized by T0; heat fluxes
re normalized by n0kBT0vm . Finally the mean collision time is proportional to the Knudsen number as

τ =
2K n
√
π

=
µ (T0) vm

n0kBT0 H
, (7)

with µ (T0) the shear viscosity of gas at the reference temperature. In the following context, we will use τ to
characterize the degree of rarefaction of gas flow.

In rarefied gas dynamics, turbulent flow is usually absent and steady-state solutions are of particular interest.
The following iterative scheme is commonly adopted to find the steady-state solution of Eq. (3): given the values
of hk

0 and hk
2 at the kth iteration step, their values at the next iteration step are calculated by solving

hk+1
s

∆t
+ v ·

∂hk+1
s

∂x
= Ck

s +
hk

s

∆t
, s = 0, 2, (8)

where ∆t is the iterative time step. This scheme can be understood as applying the backward Euler method for the
time derivative with a constant step ∆t , nevertheless the collision operators Ck

s are calculated at the kth step rather
than the (k + 1)th due to their complexity. When evaluating the collision operators, we use the fast spectral method
to approximate the linearized Boltzmann collision operator LBCO, and use the discrete velocity method to calculate
the other parts [38,39,41].

We refer the iterative scheme (8) as CIS. It will be rigorously proven in Section 4 that the CIS is efficient for
highly rarefied gas flow when the Knudsen number is large, however, it converges slowly when the Knudsen number
approaches to zero. Worse still, the obtained solution suffers large numerical dissipation if the cell size of the spatial
grid is much larger than the mean free path of gas molecules.

3. General synthetic iterative scheme for molecular gas

We have proposed the GSIS for monatomic gases to improve the CIS, which is particularly inefficient in
simulating low Knudsen number flows. Here, we extend the GSIS to non-vibrational molecular gases, where
energy exchange between the translational and rotational modes pose additional difficulties. In this section, we
mainly describe the formulation and procedure of GSIS and left the analysis of its fast convergence and asymptotic
preserving in the next sections.

Given the values of hk
0 and hk

2 at the kth step, the GSIS first calculates intermediate solutions of the reduced
velocity distribution functions from the kinetic equations as the CIS does, read as

hk+1/2
s

+ v ·
∂hk+1/2

s
= Ck

+
hk

s , s = 0, 2. (9)

∆t ∂x s ∆t

5
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Then from hk+1/2
s , the GSIS finds the solutions at the (k + 1)th step by

hk+1
0 = hk+1/2

0 +

[
∆ρ + 2∆U · v + ∆Tt

(
|v|

2
−

3
2

)]
Feq ,

hk+1
2 = hk+1/2

2 +

[
dr

2
∆Tr + 2∆qr · v

]
Feq ,

(10)

where the quantities ∆M with M = {ρ,U, Tt , Tr } are defined as

∆M = M̄ − Mk+1/2. (11)

Here Mk+1/2 are the ones calculated from hk+1/2
0 and hk+1/2

2 according to Eq. (6), and M̄ can be considered as
posterior correctors, such that Mk+1

= M̄ when evaluating them from hk+1
0 and hk+1

2 . Since we aim to facilitate fast
convergence and remove the restriction on spatial cell size in the CIS, M̄ should be ‘closer’ to the final steady-state
solution and more accurate on coarse mesh, compared to Mk+1/2. To this end, we propose to obtain M̄ by solving
the following synthetic equations (the Einstein summation is used)

∂ρ̄

∂t
+
∂Ū j

∂x j
= 0,

2
∂Ūi

∂t
+
∂ρ̄

∂xi
+
∂ T̄t

∂xi
+
∂σ̄i j

∂x j
= 0,

3
2
∂ T̄t

∂t
+
∂Ū j

∂x j
+
∂q̄t, j

∂x j
=

3
2

T̄ − T̄t

Zτ
,

dr

2
∂ T̄r

∂t
+
∂q̄r, j

∂x j
=

dr

2
T̄ − T̄r

Zτ
,

(12)

here the time derivative is omitted in the real calculations since we are interested in steady-state solutions. The
acroscopic equations are exactly the conservation laws for mass, momentum and energy, which are strictly derived

rom the kinetic equations by firstly multiplying 1, vi and 2|v|
2/3−1 to Eq. (3a), respectively, and 2/dr to Eq. (3b),

nd then integrating the resultant equations in the molecular velocity space. The equations are not closed, since
xpressions for the stress and heat fluxed are still unknown. We have found that it is necessary to express the
onstitutive relations as [35]

σ̄i j = −2τ
∂Ū<i

∂x j>
+ HoTσi j , (13a)

q̄t,i = −κtτ
∂ T̄t

∂xi
+ HoTqt,i , (13b)

q̄r,i = −κtτ
∂ T̄r

∂xi
+ HoTqr,i , (13c)

where ∂Ū<i
∂x j>

=
1
2

(
∂Ūi
∂x j

+
∂Ū j
∂xi

−
2
3
∂Ūk
∂xk
δi j

)
; HoTσi j , HoTqt,i and HoTqr,i are the high-order terms rather than the first-

order derivatives of the macroscopic quantities. It can be seen that Eqs. (12) and (13) reduce to the Navier–Stokes
equations for molecular gases when the high-order terms vanish.

To formulate the high-order terms is one of the most important parts when developing the GSIS. As we target
dilute gas flows that might fall into any flow regime, the high-order terms should contain all the rarefied effects
beyond the Navier–Stokes limit when Eq. (13) holds. We derive the high-order terms through the high-order moment
equations of the kinetic equations. Taking Eq. (13a) for instance, we multiply Eq. (3a) by 2

(
viv j − δi j |v|

2/3
)

and
integrate the resultant equation with respect to v, then we obtain (the term of time derivative is eliminated)

2
∫ (

viv j −
|v|

2

δi j

)
v ·
∂h0 dv = 2

∫ (
viv j −

|v|
2

δi j

)
C0dv. (14)
3 ∂x 3
6
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In order to obtain Eq. (13a), the term σi j/τ + 2 ∂U<i
∂x j>

is added to the left and right hand sides of (14) respectively,
written as

2
∫ (

viv j −
|v|

2

3
δi j

)
v ·
∂h0

∂x
dv +

σi j

τ
+ 2

∂U<i

∂x j>
=
σi j

τ
+ 2

∂U<i

∂x j>
+ 2

∫ (
viv j −

|v|
2

3
δi j

)
C0dv. (15)

hus HoTσi j is devised as

HoTσi j = 2τ
[
∂U<i

∂x j>
−

∫ (
viv j −

|v|
2

3
δi j

)
v ·
∂h0

∂x
dv

]
+ σi j + 2τ

∫ (
viv j −

|v|
2

3
δi j

)
C0dv. (16)

imilarly, we multiply Eq. (3a) with vi
(
|v|

2
− 5/2

)
and Eq. (3b) with vi , and integrate the resultant equations with

espect to v, then we have∫
vi

(
|v|

2
−

5
2

)
v ·
∂h0

∂x
dv =

∫
vi

(
|v|

2
−

5
2

)
C0dv,∫

viv ·
∂h2

∂x
dv =

∫
viC2dv,

(17)

hich are rearranged as∫
vi

(
|v|

2
−

5
2

)
v ·
∂h0

∂x
dv +

5
4κtτ

qt,i +
5
4
∂Tt

∂xi
= +

5
4κtτ

qt,i +
5
4
∂Tt

∂xi
+

∫
vi

(
|v|

2
−

5
2

)
C0dv,∫

viv ·
∂h2

∂x
dv +

dr

4κrτ
qr,i +

dr

4
∂Tr

∂xi
=

dr

4κrτ
qr,i +

dr

4
∂Tr

∂xi
+

∫
viC2dv,

(18)

Therefore, the high-order terms HoTqt,i and HoTqr,i have the following forms:

HoTqt,i = κtτ

[
∂Tt

∂xi
−

4
5

∫
vi

(
|v|

2
−

5
2

)
v ·
∂h0

∂x
dv

]
+ qt,i +

4κtτ

5

∫
vi

(
|v|

2
−

5
2

)
C0dv,

HoTqr,i = κrτ

[
∂Tr

∂xi
−

4
dr

∫
viv ·

∂h2

∂x
dv

]
+ qr,i +

4κrτ

dr

∫
viC2dv.

(19)

ccording to the property of the linearized Boltzmann collision operator, the last two terms in each high-order
xpressions are very close to zero [33,40]. Especially, when LBCO is replaced by the one from the Shakhov kinetic
odel [42], the kinetic equations become the Rykov kinetic model [20], where the last two terms vanish.
We summarize the procedures of GSIS for molecular gases to close this section:

• Step 1. When the velocity distribution functions hk
s and the corresponding macroscopic quantities in Eq. (6) are

known at the kth iteration, we calculate the Boltzmann collision operator LBCO in Eq. (4). We also calculate
the intermediate solutions hk+1/2

s according to Eq. (9).
• Step 2. From hk+1/2

s , we calculate the macroscopic quantities Mk+1/2 and then the high-order terms HoTσi j ,
HoTqt,i and HoTqr,i defined in Eqs. (16) and (19). Note that when calculating HoTσi j , we use the LBCO obtained
in Step 1 from hk

s , since its computational cost by the fast spectral method is relatively high and we only
evaluate it once during each iteration.

• Step 3. We obtain the macroscopic quantities M̄ by solving the synthetic equations for the conservation
laws (12), where the shear stress and heat fluxes are determined by the Navier–Stokes-like constitutive
relations (13) with source terms, i.e., the high-order terms that take account all the rarefaction effects.

• Step 4. The solutions hk+1
s at the (k+1)th iterative step are obtained by incorporating the change of macroscopic

quantities, according to Eq. (10).
• Step 5. The above steps are repeated until convergence.

4. Fast convergence and asymptotic preserving of GSIS

This section is dedicated to analyzing the convergence rate of CIS and GSIS rigorously, as well as the asymptotic
preserving property of GSIS for the simulation of molecular gas flows. To make the calculation tractable, the

linearized Boltzmann collision operator LBCO in Eq. (3a) is replaced by the Shakhov kinetic model for monatomic

7
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gas [42]

LS =
Feq

τ

[
ρ + 2U · v + Tt

(
|v|

2
−

3
2

)
+

4
15

q t · v

(
|v|

2
−

5
2

)]
−

h0

τ
, (20)

then the kinetic system is exactly reduced to the Rykov model [20]. The streaming operator ∂x is kept intact
when calculating the convergence rate; while the convergence rate of iteration for the system discretized over a
computational grid will be shown numerically in Section 5. Also, for simplicity we assume the system varies only
in the x1–x2 plane, which keeps the essential physics but simplifies the computation.

4.1. Convergence rate of CIS

First, we define the error functions of the velocity distribution functions between two consecutive iteration steps

Y k+1
s (x, v) = hk+1

s (x, v) − hk
s (x, v), s = 0, 2, (21)

and the error functions for macroscopic quantities M0 = [ρ,U1,U2, Tt , qt,1, qt,2] and M2 = [Tr , qr,1, qr,2] between
wo consecutive iteration steps

Φk+1
Ms

(x) = Mk+1
s (x) − Mk

s (x) =

∫
Y k+1

s (x, v)φs(v)dv, (22)

here

φ0(v) =

[
1, v1, v2,

2
3
|v|

2
− 1, v1

(
|v|

2
−

5
2

)
, v2

(
|v|

2
−

5
2

)]
, φ2(v) =

[
2
dr
, v1, v2

]
. (23)

Second, to determine the convergence rate g we perform the Fourier stability analysis by seeking the eigen-
unctions ys(v), αM0 = [αρ, αU1 , αU2 , αTt , αqt,1 , αqt,2 ] and αM2 = [αTr , αqr,1 , αqr,2 ] of the following forms

Y k+1
s (x, v) = gk ys(v) exp(ıθ · x), Φk+1

Ms
(x) = gk+1αMs exp(ıθ · x), (24)

here ı is the imaginary unit and θ = (θ1, θ2) is the wave vector of perturbation. The slow convergence occurs
hen |g| approaches one, where the errors barely reduce during iteration, while the fast convergence is realized
hen |g| < 1, especially when |g| approaches zero.
Here we consider the case that the iterative step ∆t = τ and denote the corresponding convergence rate as g0.

he convergence rate for other values of ∆t (not larger than τ to make the iteration stable) is obtained as

|g| = g0
∆t/τ , (25)

onsidering the fact that the velocity distribution functions in Eq. (3) decay with a fixed rate irrespective of ∆t
ppearing in Eq. (8).

Obviously, from Eqs. (22) and (24) we have

g0αMs =

∫
ys(v)φs(v)dv, (26)

nd from Eqs. (4), (8), (20), (21), and (24), we obtain the following expressions for ys(v)

(1 + ıτθ · v) y0 =
(
αρ + 2αU1v1 + 2αU2v2

)
Feq +

[
dr (αTr − αTt )

Z (dr + 3)
+ αTt

] (
|v|

2
−

3
2

)
Feq

+
4

15

[
1 +

(ω0 − 1)
Z

] (
|v|

2
−

5
2

)
(αqt,1v1 + αqt,2v2)Feq ,

(27a)

(1 + ıτθ · v) y2 =
dr

2
αTr Feq +

3dr

2Z (dr + 3)
(αTt − αTr )Feq

+
2(Z + ω1 − 1)(1 − δ)

(αq v1 + αq v2)Feq .

(27b)
Z r,1 r,2

8
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Fig. 2. The convergence rate g0 as a function of the Knudsen number τ in both CIS and GSIS. τth is the threshold Knudsen number used
o define the relaxation parameter in Eq. (31). Here g0 are obtained under dr = 2.0, Z = 1.0, δ = 1/1.33, ω0 = 1.5 and ω1 = 0.5.

ote that here we assume the wave vector of perturbation satisfies |θ |
2

= θ2
1 + θ2

2 = 1. Although in reality the
erturbation may have various values of θ , their corresponding convergence rates do not interact because the kinetic
quations are linear. Moreover it can be concluded that the convergence rate depends only on the product of τθ ,
hus it is safe to assume |θ | = 1. If |θ | ̸= 1, the convergence rate at specific values of θ and τ can be calculated
y replacing τ with τ |θ |.

Finally, multiplying Eq. (27a) with φ0(v) and Eq. (27b) with φ2(v), and integrating the resultant equations with
espect to v, we obtain nine linear algebraic equations for unknowns αMs with the aid of Eqs. (26). These algebraic
quations can be written in the matrix form as

Cα⊤

M = g0α
⊤

M , with αM = [αM0 , αM2 ], (28)

here the superscript ⊤ is the transpose operator. The details of the coefficient matrix C of 9 × 9 dimension are
iven in Appendix A. In general, the convergence rate can be obtained by numerically computing the eigenvalues

g0 of matrix C and taking the maximum absolute value of g0. The result of convergence rate as a function of the
nudsen number (τ ) for the CIS is shown as the red solid line in Fig. 2. It is clear that when the Knudsen number is

arge, g0 goes to zero so that the error between iterations decays quickly. On the other hand, g0 → 1 when τ → 0,
hich means it is hard to obtain converged steady-state solutions in the near-continuum flow regime.

.2. Convergence rate of GSIS

To calculate the convergence rate of GSIS for molecular gas, the error functions in Eqs. (21), (22), and (24) are
edefined as

Y k+1/2
s (x, v) = hk+1/2

s (x, v) − hk
s (x, v) = gk

0 ys(v) exp(ıθ · x), (29a)

Φk+1
M (x) = Mk+1(x) − Mk(x) = gk+1

0 αM exp(ıθ · x), (29b)

here the solutions of ys(v) are still given by Eq. (27). Note that the definitions for ΦMs remain unchanged, but in
he GSIS they will be calculated from the solutions of macroscopic synthetic equations, rather than directly from

Ys . On substituting Eqs. (29) into Eqs. (12) and (13), we obtain a system of linear algebraic equations for αM that
an be written in the following matrix form

⊤ ⊤
Lg0αM = RαM , (30)

9



W. Su, Y. Zhang and L. Wu Computer Methods in Applied Mechanics and Engineering 373 (2021) 113548

l
β

w
e
T
c
l
T

4

n
n
t
a
E
i

b

T

t
E

s
β

where both L and R are 9 × 9 matrices, the detailed expressions of which are as well presented in Appendix A.
By introducing G = L−1R and numerically computing the eigenvalues of G we obtain the convergence rate g0 of
GSIS, see the black dashed line in Fig. 2. It is shown that g0 goes to zero when τ → 0, which demonstrates that the
GSIS is able to boost convergence rate significantly in the near-continuum flow regime. However, the convergence
rate increases to one when τ → ∞, i.e. the convergence of GSIS becomes slow as the Knudsen number becomes
arge. To fix this problem and achieve fast convergence at any Knudsen number, we introduce a relaxation parameter

when correcting the velocity distribution functions at (k + 1)th step in Eq. (10) and now Eq. (11) becomes

∆M = β
[
M̄ − Mk+1/2] , β =

min(τ, τth)
τ

, (31)

here τth is a threshold Knudsen number. The convergence rate of this GSIS can be obtained by computing the
igenvalue of the matrix G = βL−1R + (1 − β)C, where the result of τth = ∞ is reduced to the one for Eq. (30).
he convergence rates with the threshold Knudsen number of values 0.5, 1 and 4 are shown in Fig. 2. Clearly, β
annot be too small nor too large. By choosing a proper value of β, we can make the maximum value of g0 always
ess than 0.5; this means that after 10 iterations, the error will be decreased by at least three orders of magnitude.
hus, theoretically, the GSIS can reach fast convergence in the entire flow regime.

.3. Asymptotic Navier–Stokes preserving of GSIS

In the CIS the spatial cell size has to be very small (nearly at the order of mean free path) in order to find accurate
umerical solution that is not contaminated by the numerical dissipation (e.g., numerical viscosity). This makes the
umber of spatial cells extremely huge for the CIS when simulating near-continuum flow. Now we analyze whether
he GSIS can circumvent this problem. To be specific, we investigate whether the proposed synthetic equations are
ble to recover the Navier–Stokes equations for molecular gas in the limit of τ → 0 (i.e., the high-order terms in
q. (13) obtained from the distribution functions vanish). For simplicity, let us take the Rykov model for example,

.e., the linearized Boltzmann collision operator LBCO in Eq. (3a) is replaced by Eq. (20).
To this end, we apply the Chapman–Enskog expansion, where the velocity distribution functions are approximated

y the Taylor expansion [40]

hs = hs,0 + τhs,1 + τ 2hs,2 + · · · . (32)

he expansion coefficients are determined by the following discretized version of kinetic equations:

v ·
∂hs

∂x
+ O(∆xn)v ·

∂n+1hs

∂xn+1 = Cs, s = 0, 2, (33)

where the spatial derivative ∂x is discretized by a nth order scheme and O(∆xn)∂n+1
x hs is the leading term of the

runcation error. Note that the solution does not depend on the time when the steady state is reached. Substituting
q. (32) into Eq. (33), it is found that if choosing

∆x = O
(
τ 0) , (34)

uch that the spatial cell size is independent of the Knudsen number, we have (note that when τ approaches zero,
= 1 as defined in Eq. (31))

h0,0 =Feq

[
ρ + 2U · v + Tt

(
|v|

2
−

3
2

)
+

4
15

q t · v

(
|v|

2
−

5
2

)]
+

Feq

Z

[
(T − Tr )

(
|v|

2
−

3
2

)
+

4 (ω0 − 1)
15

q t · v

(
|v|

2
−

5
2

)]
,

(35)

and

h2,0 =
dr

2
Tr Feq +

2 (Z + ω1 − 1) (1 − δ)

Z
qr · vFeq +

dr

2Z
(T − Tr ) Feq . (36)

Then, from the definition of high-order terms in Eqs. (16) and (19), we find that the constitutive relations can be
recovered as

σi j = −2τ
∂U<i

+ O(τ 2), (37)

∂x j>

10
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qt,i = −κtτ
∂Tt

∂xi
+ O(τ 2), qr,i = −κrτ

∂Tr

∂xi
+ O(τ 2). (38)

Furthermore, from the Chapman–Enskog expansion of the last two equations in Eq. (12), we have Tr = T +O(τ )
and

Tt = T −
2dr Z

3(dr + 3)
τ + O(τ 2), (39)

here the term 2dr Z/3(dr + 3) is the ratio of the bulk viscosity to the shear viscosity. Then Eq. (38) becomes

qt,i = −κtτ
∂T
∂xi

+ O(τ 2), qr,i = −κrτ
∂T
∂xi

+ O(τ 2), (40)

nd hence the Navier–Stokes equation for molecular gas can be recovered. This means that we can choose the spatial
ell size that is much larger than the Knudsen number (mean free path) to recover the Navier–Stokes equations when
→ 0. Note that, since the macroscopic synthetic equations are also solved by a discrete scheme, in order to ensure

he truncation error of the discretization is small, the spatial resolution ∆x = O
(
τ 0

)
is required to be adequate to

esolve the macroscopic flows. Note that the same conclusion can be obtained for the Wu et al. model [37].

. Numerical results and discussions

To assess the performance of the proposed GSIS for rarefied molecular gas, we consider five different test
ases, including one-dimensional thermal creep flow and conductive heat transfer between two parallel plates, two-
imensional thermal creep flow and conductive heat transfer inside a square cavity, and a thermal driven flow
nduced by a hot beam in a rectangular chamber. The linearized Wu et al. (3) as well as the Rykov model equations
where LBCO in Eq. (3a) is replaced by the Shakhov model (20)] are solved. The 4th-order discontinuous Galerkin
DG) method is employed to discretize the spatial derivatives (the details are given in Appendix B together with
he implementation of different boundary conditions). The convergence criterion for the iterative schemes is that
he maximum relative difference between successive estimates of the macroscopic quantities M , i.e.,

ϵ = max {RM} , RM =

√∫
|Mk+1 − Mk |

2dx∫
|Mk+1|

2dx
, (41)

s less than 10−5. The tests are performed in double precision on a workstation with Intel Xeon-E5-2680 processors
nd 128 GB RAM. We call the corresponding routines in Intel Math Kernel Library (MKL) to solve the linear
ystems arisen in the DG discretization and calculate FFT when evaluating LBCO if necessary.

5.1. Thermal creep flow between two parallel plates

Consider a molecular gas flow that is confined between two stationary parallel plates located at x2 = 0 and
x2 = 1 and driven by a constant temperature gradient KT = 1 along the x1 direction at τ ∈ [0.01, 10], where
he gas moves towards the hotter region in spite of uniform gas pressure everywhere. We assume that the solid
lates extend to infinite in both the x1 and x3 directions, then the flow is essentially a one-dimensional problem
nd macroscopic flow quantities only vary with x2. Due to the presence of a temperature gradient, additional terms
ppear in the governing system, which read as (only the modified equations are shown)

v ·
∂h0

∂x
= C0 − v1

(
|v|

2
−

5
2

)
KT Feq ,

v ·
∂h2

∂x
= C2 − v1

dr

2
KT Feq ,

q̄t,1 + κtτ
∂ T̄t

∂x1
= HoTqt,1 − κtτKT ,

q̄r,1 + κrτ
∂ T̄r

∂x1
= HoTqr,1 − κrτKT .

(42)

The flow is simulated by the CIS and the GSIS on two-dimensional triangular mesh. The triangular cells are
efined in the vicinity of walls (i.e. 0 < x < 0.08 and 0.92 < x < 1) to resolve the structure of Knudsen layers,
2 2
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Fig. 3. (a) Schematic of the thermal creep flow between two parallel plates, driven by a constant temperature gradient in the x1 direction.
he one-dimensional problem is solved on triangular mesh with refinement near the solid walls. Comparisons between GSIS and CIS over
range of Knudsen numbers τ ∈ [0.01, 10]: (b) the mass flow rate M and the translational (rotational) heat flow rate Qt (Qr ); (c) the

umber of iterations to reach the convergence criterion ϵ = max
{
RU1 ,Rqt,1 ,Rqr,1

}
< 10−5 using ∆t = τ . The Rykov model is solved

ith gas properties of dr = 2, δ = 1/1.33, Z = 1.0, ω0 = 0.389, and ω1 = 1.787.

n which the flow velocity varies significantly when the Knudsen number is small, see the schematic in Fig. 3(a).
he upper and lower boundaries are fully-diffuse wall, while the left and right boundaries are periodic. The Rykov
inetic model is solved by the discrete velocity method, using 32 × 32 × 24 discrete velocities over a truncated
omain of [−4, 4]3, where v1 and v2 are discretized by non-uniform nodes

vi =
vmax(

Nvi − 1
)3

(
−Nvi + 1,−Nvi + 3, . . . , Nvi − 1

)3
, i = 1 or 2, (43)

with Nvi = 32 the number of discrete velocities and vmax = 4 the maximum molecular velocity, while v3 is
discretized by uniform nodes. The time step for iteration is ∆t = τ . We use the same gas parameters as those in
Ref. [37]: the viscosity index is ω = 0.5, the rotational degree of freedom is dr = 2, the rotational collision number
is Z = 1.0, the Schmidt number is δ = 1/1.33, and ω0 = 0.389 and ω1 = 1.787 that are determined from the
kinetic theory of Mason & Monchick [43] by

1 −
5dr

4Z (3 + dr )

(
1 −

2
5δ

)
=

(
1 +

1 − ω0

2Z

)−1

,

1 +
15

4Z (3 + dr )

(
1 −

2
5δ

)
=

(
1 +

(1 − δ) (1 − ω1)

Zδ

)−1

.

(44)

The 4th-order DG method is applied to discretize the governing equations in the spatial space on 64 triangles
with 16 uniform triangles in each Knudsen layer and 32 uniform ones in the bulk region). The relaxation parameter

in Eq. (31) for the correction of the velocity distributions in the GSIS is calculated as

β =
min (τloc, τth)

τloc
, (45)

here τloc is the local Knudsen number estimated from the local cell size, i.e. τloc = τ/Hloc with Hloc the height of
triangles, to include the local rarefaction effect (e.g., the local Knudsen number within the Knudsen layer is always
larger than 1).

Fig. 3(b) shows the mass flow rate M =
∫ 1

0 U1dx2, the translational heat flow rate Qt =
∫ 1

0 qt,1dx2 and the
rotational heat flow rate Qr =

∫ 1
0 qr,1dx2. Over the considered range of Knudsen numbers, the mass flow rate

and the heat flux rates increase against the Knudsen number and the GSIS results are coincident with the CIS
ones. Fig. 3(c) shows the total number of iterations for the CIS and the GSIS to reach the convergence criterion
ϵ = max

{
RU1 ,Rqt,1 ,Rqr,1

}
< 10−5. When the Knudsen number τ drops from 1 to 0.01, the number of iterations

by the CIS significantly increase from about 30 to more than 8000; on the contrary, that of the GSIS is always below

70, and the GSIS only needs as few as 21 steps to reach the steady state solution at τ = 0.01. It is also found that,

12
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Table 1
Comparison between GSIS and CIS for one-dimensional thermal creep flow in terms of the mass
flow rate M, the number of iterations (Itr) to reach ϵ = max

{
RU1 ,Rqt,1 ,Rqr,1

}
< 10−5 with

∆t = τ and τth = 1 in GSIS, as well as the CPU time cost on single processor. The Rykov model
is solved with dr = 2, δ = 1/1.33, Z = 1.0, ω0 = 0.389, and ω1 = 1.787. The molecular velocity
domain [−4, 4]3 is discretized by 32 × 32 × 24 points and the spatial domain is discretized by 64
triangles. The 4th-order DG scheme is employed. The results obtained by a finite difference solver
using CIS [37] is listed in the last column for reference.

τ GSIS CIS M [37]

M Itr CPU time [s] M Itr CPU time [s]

0.01 0.0044 21 80.9 0.0043 8158 27 086.2 –
0.125 0.0454 41 152.5 0.0454 196 645.5 0.0455
1.0 0.1594 31 117.2 0.1594 31 105.5 0.1594
10.0 0.3546 118 448.4 0.3546 118 371.2 0.3546

Fig. 4. Profiles of flow velocity (only U1 (0 ≤ x2 ≤ 0.5) is shown since the problem is symmetrical about x2 = 0.5) for the thermal
reep flow of nitrogen at different iteration steps obtained from: (a) CIS and (b) GSIS with τth = 1. (c) The decay of the error
ϵ = max

{
RU1 ,Rqt,1 ,Rqr,1

}
as a function of the iteration step with ∆t = τ . The Knudsen number is τ = 0.01. The Rykov model is

olved with dr = 2, δ = 1/1.33, Z = 1.0, ω0 = 0.389, and ω1 = 1.787.

or the three threshold Knudsen numbers τth , larger τth results in faster convergence. However, the iteration is not
table at some Knudsen numbers when τth = 4. This is due to the fact that the high-order terms defined in Eqs. (16)
nd (19) may have strong variations within the Knudsen layer, which leads to unphysical solutions and blowups
f the code when solving Eq. (12). In practice, we usually choose τth ≤ 1 to keep the calculation stable. When
> 1, the GSIS and the CIS use almost the same number of iterations, which increase slightly as the Knudsen

umber increases, since the relaxation parameter β approaches to 0 when the Knudsen number goes to infinity and
he behavior of the GSIS reduces to that of the CIS.

In Table 1, we compare the GSIS and the CIS in terms of the mass flow rate, the number of iterations to reach
= max

{
RU1 ,Rqt,1 ,Rqr,1

}
< 10−5 and the CPU time cost on single processor. The mass flow rates from a finite

ifference solver that implements the CIS [37] are also included to indicate the accuracy of the current DG results.
t small Knudsen numbers, the GSIS can significantly reduce the iteration steps, therefore the CPU time cost by

he GSIS is much less than that of the CIS, and the smaller the Knudsen number the more saving of CPU time by
he GSIS. For example, the GSIS can be 330 times and 4 times more efficient than the CIS at τ = 0.01 and 0.125,
espectively. When the Knudsen number is large, the GSIS uses almost the same number of iterations as the CIS
o obtain the steady-state solution, although the GSIS costs about 10% to 20% more CPU time than the CIS as the
dditional synthetic equations are solved (an estimation of the computational complexity is given in Appendix B).

ince the total number of iterations are small, both schemes are efficient.
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To further demonstrate the ability of GSIS with fast convergence to steady-state solution for flow at small
nudsen number, we plot in Fig. 4 the profiles of flow velocity at different iteration steps as well as the history of
ecay of the error ϵ = max

{
RU1 ,Rqt,1 ,Rqr,1

}
from the CIS and the GSIS at τ = 0.01. Starting from the initial

alue of U1 = 0, it is found that for the CIS the perturbation in flow velocity from the external temperature gradient
rst arises near the walls and the gas in the bulk region remains undisturbed at the beginning of the iteration, e.g., at

he 100th iteration step; as the iteration proceeds, the perturbation gradually penetrates into the bulk region, and the
cheme needs 8158 steps to achieve ϵ < 10−5. The situation is completely changed in the GSIS, now with the aid
f the synthetic equations, within the whole domain the macroscopic velocity emerges even after 1 iteration and the
elocity profile is very close to the final steady state at the 5th iteration. Therefore the GSIS converges extremely
ast, where the error decays by nearly 3 orders of magnitude within 10 iterations with a proper choice of τth , see
ig. 4(c); such a behavior is consistent with the analytical calculation of the convergence rate in Fig. 2, where the
aximum value of g0 is around 0.5.

.2. Thermal conductions between parallel plates and inside a square cavity

The second problem is the steady thermal conduction. We first consider two parallel plates located at x2 = 0 and
x2 = 1, where the lower plate has a temperature of ∆T and the upper one has a temperature of −∆T . To compare
ur results with the DSMC data in Ref. [23], we set ∆T = 0.0476 and the gas parameters as dr = 2, ω = 0.5,
= 1/1.2, Z = 5. The two free parameters ω0 and ω1 are determined to recover the following Prandtl number Pr

sed in the DSMC:

Pr =
5 + dr

5Z

[
3

2Z + 1 − ω0
+

dr/5
δZ + (1 − δ) (1 − ω1)

]−1

= 0.73. (46)

ote that equipped with the variable-soft-sphere model and the Borgnakke & Larsen collision model [11], the
SMC can recover the experimental values of the shear viscosity, the bulk viscosity as well as the self-diffusion

oefficient, but it has no mechanism dedicated to recovering the thermal conductivity and its components [12].
ctually, we may have arbitrary combination of ω0 and ω1 from Eq. (46); this gives us the freedom to adjust

he translational Eucken factor independently, while other gas kinetic model does not have this capability. Such a
ranslational Eucken factor, as will be shown later, affect the rarefied flow of molecular gas significantly. Here in
rder to make a definite calculation, we first determine ω0 from the first equation in Eq. (44) with given δ and Z ,
nd then determine ω1 from Eq. (46); finally, we have ω0 = 0.452 and ω1 = 1.797.

The kinetic equations are solved by the GSIS and the CIS, respectively, where the time step for iteration is
hosen as ∆t = τ/4 to make the iteration stable. The truncated molecular velocity domain [−6, 6]3 is discretized

by 48 non-uniform points described by Eq. (43) in v1 and v2 and 24 equidistant ones in v3. The collision term LBCO
is calculated by the fast spectral method using 48 × 48 × 24 equidistant frequencies in the frequency domain, and
6-point Gauss–Legendre quadrature for integrations with respect to the solid angles in unit sphere [39]. As shown
in Fig. 5(a), the two-dimensional spatial domain is partitioned by 16 triangles in the following way: first Ns = 9
eeds with

x2 =
(
10 − 15s + 6s2) s3, s =

(0, 1, . . . , Ns − 1)
2 (Ns − 1)

, (47)

re distributed along the x2 direction to divide the domain into 8 rectangles; then each rectangle is split into 2
niform triangles, which results in the maximum cell size (characterized by the height of triangle) being around
.22. The boundary conditions are the same as in the previous test case. The 4th-order DG method is used for the
patial discretization. In the GSIS, the threshold Knudsen number in Eq. (45) is set as τth = 0.5.

We compare the density ρ and the translational temperature Tt obtained from the GSIS with the DSMC results at
= 0.01, 0.1, 1 and 10 in Fig. 5(b) and (c). The rotational temperature is very close to the translation temperature

n this problem. Note that the DSMC data is obtained by solving the nonlinear version of Eqs. (3) [23]. It is shown
hat the GSIS results are in good agreement with the DSMC data. The comparison between the GSIS and the CIS
n terms of the total heat flux q = qt,2 + qr,2 measured at x2 = 0.5, the number of iteration to reach the criterion
= max{Rρ,RTt ,RTr } < 10−5, as well as the wall time cost on 4 processors using OpenMP for parallelism, are

isted in Table 2. The total heat flux obtained from the DSMC is also included. It is found that the GSIS costs about

0 to 60 iterations to find the steady state solutions for each case considered, and the maximum relative difference

14
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Fig. 5. (a) Triangular mesh used to calculate the thermal conduction of molecular gas confined between two parallel plates. Comparisons
between the GSIS and DSMC results [23] at τ = 0.01, 0.1, 1 and 10 on (b) density ρ; and (c) translational temperature Tt . (d) Comparison
between GSIS and CIS on the decay of the error ϵ = max

{
Rρ ,RTt ,RTr

}
as a function of the iteration step with τ = 0.1 and ∆t = τ/4.

he kinetic equations (3) and (4) are solved with gas properties of ω = 0.5, dr = 2, δ = 1/1.2, Z = 5.0, ω0 = 0.452, and ω1 = 1.797.

Table 2
Comparison between GSIS and CIS for the thermal conduction between two parallel plates in
terms of the total heat flux q (x2 = 0.5) measured at the center of the domain, the number of
iterations (Itr) to reach ϵ = max

{
Rρ ,RTt ,RTr

}
< 10−5 with ∆t = τ/4 and τth = 0.5, as well

as the wall time cost on 4 processors using OpenMP for parallelism. The kinetic equations (3)
and (4) are solved using 48 × 48 × 24 discrete velocities over a truncated domain [−6, 6]3. The
same number of frequencies are employed to calculate LBCO by the fast spectral method. The
4th-order DG scheme is applied on spatial mesh with 16 triangles. The gas properties are ω = 0.5,
dr = 2, δ = 1/1.2, Z = 5.0, ω0 = 0.452, and ω1 = 1.797. The results obtained from DSMC [23]
is listed in the last column for reference.

τ GSIS CIS q [23]

q (x2 = 0) Itr Wall time [s] q (x2 = 0) Itr Wall time [s]

0.01 0.0022 61 98.5 – – – 0.0023
0.1 0.0173 56 89.7 0.0167 479 676.3 0.0175
1.0 0.0557 39 63.6 0.0557 45 63.5 0.0557
10.0 0.0761 64 103.5 0.0761 64 90.3 0.0755

between q from the GSIS and the one from DSMC is about 4%. This further confirms the accuracy and efficiency
f GSIS; especially, the GSIS can obtain accurate results on such coarse mesh at τ = 0.01, where the maximum

cell size is about 22 times of the mean free path of gas molecules, due to the asymptotic preserving. Compared
to the GSIS, the CIS requires almost the same number of iteration steps and slightly less computational time to
obtain the same solutions at large Knudsen numbers, however, it needs many more iterations to reach the criterion
of convergence than the GSIS at small Knudsen numbers. At τ = 0.1, the CIS needs 423 more iterations and nearly
7 times more computational time. The decays of the error ϵ for the GSIS and the CIS are shown in Fig. 5(d), where
it is found that the error in the CIS repeatedly oscillates before it is reduced to 10−5; this leads to the extremely slow
convergence. Worse still, unlike the thermal creep flow in the previous section that it is well resolved by refined
spatial mesh, the coarse mesh used here makes the CIS solutions contaminated by large numerical dissipation. For
instance, the heat flux q predicted by the CIS is smaller than the one from the GSIS at τ = 0.1; while it hardly
obtains converged solutions at τ = 0.01, where the error ϵ is still larger than 10−2 even after 10 000 iterations.

Now we push the simulation to the continuum limit to further show the asymptotic preserving property of GSIS,
by considering the thermal conduction inside a two dimensional square cavity at τ = 0.001. The cavity is of
dimensions [0, 1] × [0, 1], where the upper boundary is maintained at a higher temperature of TH = 1, and that of
he other three walls is TC = 0. The analytical solution of temperature T at the continuum limit is determined by
he general heat equation ∇

2T = 0

T − TC

T − T
=

2
π

∞∑ (−1)n+1
+ 1

n
sin (nπx1)

sinh (nπx2)

sinh (nπ)
. (48)
H C n=1
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Fig. 6. (a) Triangular mesh used to calculate the thermal conduction inside a square cavity. (b) Comparison on the temperature T obtained
from GSIS (colored background) at τ = 0.001 and the analytical solution (white solid lines) of the steady heat equation at continuum limit.
For GSIS, the kinetic equations (3) and (4) are solved with gas properties of ω = 0.5, dr = 2, δ = 1/1.2, Z = 5.0, ω0 = 0.452, and

1 = 1.797.

We numerically solve this problem by the GSIS on the triangular mesh as illustrated in Fig. 6(a). The mesh is
enerated in the following way: first 15 seeds are distributed along the x1 and x2 according to Eq. (47) to divide
he domain into 14 × 14 rectangles; then each rectangle is partitioned into two uniform triangles. This results
n a mesh with totally 392 triangles and the maximum (minimum) cell size is about 90 (2) times of the mean
ree path of gas molecules. The other computational configuration is the same as that for the one–dimensional
roblem. Fig. 6(b) plots the temperature contours obtained from the GSIS (terminated at the 69th iteration when
= max{Rρ,RTt ,RTr } < 10−5) and the analytical solution (48). It is found that the two results are in good

greement. Therefore, the GSIS can recovery the Navier–Stokes solution without restricting the cell size comparable
o or even smaller than the molecular mean free path.

.3. Thermal creep flow induced by temperature gradient of walls in a square cavity

Now we consider more complicated flows that are seldom simulated by the DSMC or other deterministic solvers,
hat is a cavity flow induced by a temperature gradient at wall from the early slip flow regime to the early transition
egime, e.g. with the Knudsen numbers τ = 0.005, 0.05 and 0.5. The computational domain is a 1 × 1 square,
artitioned by the structured triangular mesh the same as shown in Fig. 6(a). The boundaries are fully diffuse walls
ith the left and right ones maintained at a temperature TC and the other two having varied temperature given by

T (x1, x2 = 0 and 1) =

{
2 (TH − TC) x1 + TC , x1 ≤ 0.5,
−2 (TH − TC) x1 + 2TH − TC , x1 > 0.5,

(49)

here we set TH/C = ±0.03663, respectively. The working gas is nitrogen of ω = 0.74, dr = 2 and δ = 1/1.33.
he parameters Z , ω0 and ω1 are chosen to make the bulk viscosity and the thermal conductivity equal to the
xperimentally measured values. Note that it is convenient to use the Eucken factor to characterize the transfer of
omentum and energy by molecules [44], which is defined as (in SI base unit)

feu =
m (κt + κr )

µkB
=

3
2

ft +
dr

2
fr , (50)

ith ft and fr being the translational and rotational Eucken factors, respectively. Therefore, from Eq. (5), we have

ft =
5
2

(
1 +

1 − ω0

2Z

)−1

,

fr =

[
δ +

(1 − ω1) (1 − δ)
]−1

. (51)

Z
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Table 3
The computational configurations to solve the Wu et al. model for the thermal flow induced by temperature
gradient of walls in a cavity: the number of triangles Nel for spatial discretization; the number of discrete
molecular velocities Nv1 × Nv2 × Nv3 ; the time step ∆t and the threshold τth for the iteration of GSIS.
‘Itr’ denotes the number of iterations to reach ϵ = max{Rρ ,RTt ,RTr ,R|U |} < 10−5 and the wall time
is that cost on 12 processors using OpenMP for parallelism. 32 × 32 × 24 frequencies are employed to
evaluate LBCO. The locations of the center of the lower left vortex generated in the field are listed in the
last column.

τ Nel Nv1 × Nv2 × Nv3 ∆t τth Itr Wall time [s] (x1, x2)

0.005 392 64 × 64 × 24 τ/3 0.5 49 375.5 (0.28, 0.14)
0.05 288 64 × 64 × 24 τ/3 0.4 66 920.5 (0.27, 0.17)
0.5 128 72 × 72 × 24 τ/3 0.5 73 1359.2 (0.24, 0.18)

Fig. 7. Thermal flow of nitrogen with ω = 0.74, dr = 2, Z = 2.235 and δ = 1/1.33 induced by temperature gradient of walls in a cavity.
a) streamlines and background contours of the total temperature T at the Knudsen number τ = 0.05 with the Eucken factors ft = 2.24,
fr = 1.54 (ω0 = 0.481, ω1 = 1.924). (b) streamlines and background contours of the magnitude of translational heat flux |q t | at different

nudsen numbers and translational Eucken factors: from the lower to the upper rows, τ = 0.005, 0.05 and 0.5, respectively; ft = 2.24,
fr = 1.54 for the left column; ft = 1.5, fr = 2.65 (ω0 = −1.98, ω1 = 4.374) for the right column. Only the lower left quarters of the flow
elds are shown in (b).

inally, the experiment of spontaneous Rayleigh–Brillouin scattering [12] shows that nitrogen has Z = 2.235,
ft = 2.24 and fr = 1.54 at the temperature of 273 K, thus we have ω0 = 0.481 and ω1 = 1.924. For all the cases,
he truncated molecular velocity domain is [−6, 6]3, which is discretized by 64 × 64 nonuniform points in v1 and
2 for τ = 0.005 and τ = 0.05, and 72 × 72 for τ = 0.5, while v3 is discretized by 24 uniform points. To evaluate
he Boltzmann collision operator, 32 × 32 × 24 equidistant frequencies are employed. For spatial discretization,
92, 288 and 128 triangles are used for the cases of τ = 0.005, 0.05 and 0.5, respectively. The other parameters
sed in the GSIS as well as the number of iterations and computational time cost to obtain the steady-state solutions
re listed in Table 3.

Fig. 7(a) illustrates the counters of total temperature and streamlines for the flow at τ = 0.05. It is observed that
igher temperature occurs near the centers of the lower and upper walls due to the heating from the walls, while
ower temperature appears in the vicinity of four corners. The tangential temperature gradient along the lower and
pper walls results in the thermal creep flows, where gas molecules moves from the cold regions to the hot ones.
ventually, 4 vortexes are generated within the domain with two rotating counter-clockwisely and the others rotating
lockwisely. Note that the same flow for monatomic gas has been calculated by solving the Boltzmann equation in

ef. [41]. The flow pattern of molecular gas is similar to that of the monatomic gas.
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Fig. 8. Thermal flow of nitrogen with ω = 0.74, dr = 2, Z = 2.235 and δ = 1/1.33 induced by temperature gradient of walls in a cavity at
= 0.005: (a) the Horizontal/vertical velocities U1/U2, (b) the translational heat fluxes qt,1/qt,2 and (c) the rotational heat fluxes qr,1/qr,2

long the vertical/horizontal lines crossing the center of the lower left vortex (0.28, 0.14). Only the lower left quarter of the flow field is
hown.

It has been found that, in the thermal creep flow of molecular gases, the mass flow rate is proportional to the
ranslation Eucken factor rather than the total one [45–47]. We also calculate the flows with different ft but the
ame feu . We plot the variations of the horizontal (vertical) velocities U1 (U2), the translational heat fluxes qt,1
qt,2), as well as the rotational heat fluxes qr,1 (qr,1) along the vertical (horizontal) lines that cross the center of
he lower left vortex (0.28, 0.14) at τ = 0.005 in Fig. 8. The results are only shown within the lower left quarter
f the computational domain due to symmetry of the flow field. It can be seen that with smaller ft but the same

feu , the flow possesses smaller magnitude of bulk velocity and translational heat fluxes but larger rotational fluxes.
he trends for flows at τ = 0.05 and 0.5 are similar. This further proves that the thermal creep flow is affected by

he translational heat conduction. Fig. 7(b) illustrates the counters of the magnitude of translational heat flux |q t |

nd streamlines for ft = 2.24 and fr = 1.54 as well as those for ft = 1.5 and fr = 2.65, at different Knudsen
umbers. It is observed that, at each Knudsen number, the heat transfer due to translational motions of molecules
s strengthened near the center of the lower wall, however it becomes very weak in the center of the cavity. As the
egree of rarefaction intensifies, the magnitude of heat flux generally increases. The center of the lower left vortex
lightly moves towards the left upper domain with increasing Knudsen number, see the last column in Table 3. It
s also shown that, smaller ft leads to smaller |q t |, however the location of the center of the vortex is not sensitive
o the translational Eucken factor.

.4. Thermal driven flow induced by a hot beam in a rectangular chamber

Finally, we simulate a two-dimensional thermal flow induced by a hot beam encompassed in a cold rectangular
hamber, at τ = 0.05, 0.5 and 5. The beam, which is placed with a distance of 1 away from the left and bottom
alls of the enclosure, has dimension of 4 × 2 and temperature of TH = 1, while the chamber has dimension of
0 × 8 and temperature of TC = 0, see Fig. 9(a). We consider a molecular gas that is filled between the beam
nd chamber. The gas parameters are set as: the viscosity index is ω = 0.933, the rotational degree of freedom is
r = 2, the Schmidt number is δ = 1/1.55 and the rotational number is Z = 1.6. ω0 = 0.629 and ω1 = 0.519 are
btained to have ft = 2.24 and fr = 1.33, respectively. Unlike the continuum flow where the flow velocity is zero
nd the temperature is governed by the Fourier’s heat conduction law, at rarefied condition, the inhomogeneity of
emperature induces not only energy exchange but also momentum transfer that in turn produces pressure gradient
hus macroscopic flow velocity. This is a challenging problem for simulation, where the rarefaction effect should be
ell captured as it is the origin of the macroscopic motion. In addition, the magnitude of flow velocity is very small,

.g., it is at the order of 10−4 within most of the flow field when τ = 0.05. Therefore the numerical method should
e accurate and efficient enough to well resolve the variation of flow velocity, meanwhile minimize numerical error
o avoid contamination of the solution. We have shown that, insufficient resolution may lead to completely different
nd wrong result [35]. Fig. 9(b) illustrates the schematic of the spatial mesh, which is generated by structured
riangles near the solid surfaces and unstructured triangles in the bulk region. Refinements are placed in the vicinity
18
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Fig. 9. Thermal flow of a molecular gas with ω = 0.933, dr = 2, Z = 1.6, δ = 1/1.55, ω0 = 0.629 and ω1 = 0.519 induced by a hot
eam in a rectangular chamber. Schematic diagrams of (a) geometry and (b) spatial mesh. (c) From left to right: streamlines and background
ontours of total temperature T at Knudsen number τ = 0.05, 0.5 and 5, respectively.

f the walls and near the corners of the beam for high resolutions of the Knudsen layer and singularity induced by
he sharp edge. A total of 13 960, 6630 and 2660 triangles are used for flows at τ = 0.05, 0.5 and 5, respectively.
he minimum cell size is about 1% of the mean free path of gas molecules, while the maximum cell sizes are
5, 7.5 and 1.5 times of the mean free path when τ = 0.05, 0.5 and 5, respectively. The 4th-order DG scheme is
pplied to solve the kinetic and synthetic equations. The truncated molecular velocity space [−6, 6]3 is discretized
y 48 × 48 × 24 nodes for τ = 0.05 and 0.5, and by 96 × 96 × 24 nodes for τ = 5, again, with nonuniform ones
n v1,2 and uniform ones in v3. The configuration for the fast spectral method to evaluate LBCO is the same as that
n the previous section. We set ∆t = τ/3 and τth = 0.2 ∼ 0.5 to ensure the iteration of GSIS stable. Eventually, the
SIS cost 163 (22.8 h), 109 (7 h) and 44 (3.8 h) iterations (the wall time on 28 processors) to obtain the steady-state

olutions when ϵ = max{Rρ,RTt ,RTr ,R|U |} < 10−5, for flows at τ = 0.05, 0.5 and 5, respectively. To the best
nowledge of the authors, this is the most efficient solver for simulating such challenging problem.

The obtained contours of total temperature and streamlines are shown in Fig. 9(c). It is observed that the
emperature of flow generally drops as the Knudsen number increases. When τ = 0.05, in the vicinity of each
urface of the beam, the thermal flow drives gas molecules moving from the corners to the center of the surface,
hich forms a high pressure region therein and pushes the gas further into the void between the beam and the

hamber. Due to the confinement of the chamber walls, gas molecules finally return to the corners of the beam.
s a consequence, eight vortices are generated around the corners of the beam. Besides, three more vortices can
e observed near the upper-left and lower-right corners of the chamber. When τ increases to 0.5 and further to 5,
he two vortices near the lower-right corner of the chamber first merge as a larger vortex, which gradually grows
19
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Fig. 10. Thermal flow of a molecular gas with ω = 0.933, dr = 2, Z = 1.6, δ = 1/1.55, ω0 = 0.629 and ω1 = 0.519 induced by a hot
eam in a rectangular chamber. Normal stress pn (first row) and magnitude of heat fluxes |q t | and |qr | (second row) upon the surface of
he hot beam, where the horizontal axis illustrates the distance along the edge from the lower left corner in a counter-clockwise manner.
a) and (d): τ = 0.05; (b) and (e): τ = 0.5; (c) and (f): τ = 5.

p and swallows up the vortices close to it. Meanwhile, the vortex upon the upper-right corner of the beam also
ecomes larger and larger and swallows up the smaller vortices on its left side.

Fig. 10 plots the normal stress pn and the magnitude of the translational (rotational) heat flux |q t | (|qr |) distributed
n the surfaces of the hot beam. Here pn = n · P · n, with n the outward unit normal vector of the beam surface
nd Pi j = 2

∫
viv j h0dv the pressure tensor. It is observed that with increasing degree of rarefaction, i.e., fewer

ntermolecular collisions, the three quantities become larger and the difference between |q t | and |qr | intensifies.
Furthermore, pn on each surface becomes more unbalanced, which mainly contributes to the arising of Knudsen
force [48,49]. To include the effect of the shear viscosity index, we also calculate the flows with ω = 0.5 (now
δ = 1/1.2, ω0 = 0.629 and ω1 = 1.728 to remain the same values of ft and fr ). It is found that smaller ω results in
smaller pn but larger |q t |, and this effect is enhanced as the Knudsen number increases. The shear viscosity index

as scarcely any influence on |qr |, thus we do not plot it for ω = 0.5 in Fig. 10.

6. Conclusions

We have proposed a general synthetic iterative scheme for rarefied polyatomic gas flows, with the aim to tackle
the difficulties of the conventional iterative scheme, when solving the kinetic equation for gas flows in the near
continuum flow regime. The key ingredient of GSIS is that a set of macroscopic equations are simultaneously
solved with the gas kinetic equations, from which the flow density, the bulk velocity as well as the translational
and rotational temperatures are obtained to guide the evolution of molecular velocity distribution functions. Due
to the fact that the constitutive equations for the stress tensor and the heat fluxes explicitly contain not only the
Navier–Stokes relations but also the high-order terms exactly derived from the kinetic equations, the proposed GSIS
can achieve fast convergence to steady-state solutions in small-Knudsen-number flow regimes while produces results

accurate when the effect of rarefaction intensifies.
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A rigorous Fourier stability analysis has been conducted to show that the maximum value of convergence
ate for the extended GSIS can be less than 0.5, provided that a relaxation parameter (actually with quite large
arameter window) for the correction of the velocity distribution functions from macroscopic quantities is properly
hosen. This means that the scheme can reduce the difference of solutions between two successive iterative steps
y at least three orders of magnitude only after 10 iterations, allowing fast convergence over the whole flow
egime. Furthermore, through the Chapman–Enskog expansion, we have demonstrated that the macroscopic synthetic
quations are reduced to the Navier–Stokes equations when the Knudsen number approaches zero, if the spatial cell
ize is adequate to resolve the hydrodynamic behaviors. The property of asymptotic preserving guarantees the GSIS
o obtain accurate solution for small-Knudsen-number flows on the spatial cell size much larger than the mean free
ath of gas molecules.

The numerical results for the one-dimensional thermal creep flow and the thermal heat transfer between two
arallel plates as well as the two-dimensional thermal heat transfer in a square cavity have shown that the proposed
cheme can obtain the steady-state solutions within dozens of iterations when the Knudsen number varies from
.001 to 10. Meanwhile, the comparisons with the available DSMC data, the analytical solutions and the results
rom other deterministic solver prove accuracy of the GSIS. Especially, it can recover the solutions from continuum
heory on a spatial mesh having maximum cell size of nearly 100 times larger than the molecular mean free path.
he tests for the two-dimensional thermal creep flow and the thermal flow induced by the hot beam in the rectangular
hamber have demonstrated the ability of the proposed GSIS to simulate more complicated flows and investigate
he effects of the intermolecular potential (reflected in the viscosity index) and internal structure of gas molecules
reflected in the bulk viscosity, the translational and rotational thermal conductivities) accurately and efficiently.
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ppendix A. Matrices in calculation of convergence rate

In Section 4.1, we have shown that the convergence rate of CIS can be found by computing the eigenvalues of
9 × 9 matrix C, see Eq. (28). Here, the detail of C is given below,

C =

[
C6,9

C3,9

]
, C6,9 = [C1,C2], C3,9 = [C3,C⊤

4 ,C5,C6], (A.1)

here C2, C3 C5 are zero matrices with dimension of 2 × 2, 3 × 3 and 3 × 2, respectively, while

C1 =

∫
y00 [1, 2v1, 2v2, y14, y15, y16, y17]⊤ φ0dv,

C4 =
3dr

2Z (dr + 3)

∫
y00dv,

C6 =

∫
y00 [y61, y62, y63]⊤ φ2dv,

(A.2)
21
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a

with

y00 =
Feq (v)

1 + ıτθ · v
φ2, y14 =

[
1 −

dr

Z (dr + 3)

] (
|v|

2
−

3
2

)
,

y17 =
dr

Z (dr + 3)

(
|v|

2
−

3
2

)
, y15 =

4
15

[
1 +

ω0 − 1
Z

]
v1

(
|v|

2
−

5
2

)
,

y16 =
4

15

[
1 +

ω0 − 1
Z

]
v2

(
|v|

2
−

5
2

)
, y61 =

[
dr

2
−

3dr

2Z (dr + 3)

]
,

y62 = 2
(Z + ω1 − 1)(1 − δ)

Z
v1, y63 = 2

(Z + ω1 − 1)(1 − δ)
Z

v2.

In the calculation of convergence rate for the GSIS according to Eq. (30), the 9 × 9 matrix L is:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ıθ1 ıθ2 0 0 0 0 0 0
ıθ1 τ 0 ıθ1 0 0 0 0 0
ıθ2 0 τ ıθ2 0 0 0 0 0
0 0 0 3dr

2(dr +3) ıθ1 ıθ2 −
3dr

2(dr +3) 0 0

0 0 0 −
3dr

2(dr +3) 0 0 3dr
2(dr +3) ıθ1 ıθ2

0 0 0 κtτ ıθ1 1 0 0 0 0
0 0 0 κtτ ıθ2 0 1 0 0 0
0 0 0 0 0 0 κrτ ıθ1 1 0
0 0 0 0 0 0 κrτ ıθ2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.3)

nd the 9 × 9 matrix R is

R = [0,R1,R2, 0, 0,Rt1,Rt2,Rr1,Rr2]⊤ , (A.4)

where

R1 =

∫
y00w1 [1, 2v1, 2v2, y14, y15, y16, y17, 0, 0]⊤ dv,

R2 =

∫
y00w2 [1, 2v1, 2v2, y14, y15, y16, y17, 0, 0]⊤ dv,

Rt1 =

∫
y00wt1 [1, 2v1, 2v2, y14, y15, y16, y17, 0, 0]⊤ dv,

Rt2 =

∫
y00wt2 [1, 2v1, 2v2, y14, y15, y16, y17, 0, 0]⊤ dv,

Rr1 =

∫
y00wr1

[
0, 0, 0,

3dr

2Z (dr + 3)
, 0, 0, y61, y62, y63

]⊤

dv,

Rr2 =

∫
y00wr2

[
0, 0, 0,

3dr

2Z (dr + 3)
, 0, 0, y61, y62, y63

]⊤

dv,

(A.5)

with

w1 =τv1 + τ (ıθ1v1 + ıθ2v2)
[

2
3

ıθ1(2v2
1 − v2

2 − v2
3) + 2iθ2v1v2

]
,

w2 =τv2 + τ (ıθ1v1 + ıθ2v2)
[

2ıθ1v1v2 +
2
3

ıθ2(2v2
2 − v2

1 − v2
3)

]
,

wt1 =κtτ ıθ1

(
2
|v|

2
− 1

)
−

4κtτ (ıθ1v
2
1 + ıθ2v1v2)

(
|v|

2
−

5
)
,

3 5 2
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wt2 =κtτ ıθ2

(
2
3
|v|

2
− 1

)
−

4κtτ

5
(ıθ1v1v2 + ıθ2v

2
2)

(
|v|

2
−

5
2

)
,

wr1 =
2ıθ1

dr
κrτ −

4
dr
κrτ (ıθ1v

2
1 + ıθ2v1v2),

wr2 =
2ıθ2

dr
κrτ −

4
dr
κrτ (ıθ1v1v2 + ıθ2v

2
2).

Appendix B. Discontinuous Galerkin method and boundary conditions

We use the discontinuous Galerkin (DG) method to discretize the governing equations on triangular mesh in the
physical space. Let Ω ∈ R2 be a computational domain with boundary ∂Ω in the x1–x2 plane, which is partitioned
into Nel disjoint regular triangles ∆l : Ω = ∪

Nel
l {∆l}. The boundaries of the triangles define a group of N f c faces

Γc: Γ = ∪
Nel
l {∂∆l} = ∪

N f c
c {Γc}. For the solution of gas kinetic equations, approximations of the reduced velocity

distribution functions are sought in the following piecewise finite element spaces

V =
{
ϕ : ϕ|∆r ∈ PK (∆r ) ,∀∆r ⊂ Ω

}
, (B.1)

where PK (D) denotes the space of K th order polynomials on a domain D. We introduce the notations (a, b)D =∫
D∈R2 (a ⊙ b) dx1dx2 and ⟨a, b⟩D =

∫
D∈R1 (a ⊙ b) dΓ , where ⊙ can be either the dot (·) or tensor (⊗) product. The

DG formulation for CIS to find the approximations of the velocity distribution functions within each ∆l at each
iteration step is

1
∆t

(ϕ, hs)∆l
+ ⟨ϕ, Ĥ · n⟩∂∆l − (∇ϕ, vhs)∆l

= (ϕ, Cs)∆l
+

1
∆t

(ϕ, hs)∆l
, s = 0, 2, (B.2)

where n is the outward unit normal vector and Ĥ is the numerical flux that depends on the solutions from both
sides of ∂∆l since the approximations of hs are discontinuous there. We calculate the numerical flux using the
first-order upwind principle as

Ĥ · n =
1
2
v · n

(
hs + hext

s

)
+

1
2
|v · n|

(
hs − hext

s

)
, (B.3)

with hext
s being the distribution from a neighboring triangle that shares the boundary ∂∆l with ∆l . If ∂∆l is at the

boundary of computational domain, i.e., ∂∆l ∩ ∂Ω ̸= 0, hext
s is evaluated using the given boundary condition. Once

hext
s is known, hs in ∆l can be obtained by solving the linear system (B.2). A sweeping technique is utilized to find

hs in an element-by-element fashion for all triangles [41]. We also refer to the DG formulation incorporated into
the fast spectral method for evaluating (ϕ,LBCO)∆l

in Ref. [41].
The synthetic macroscopic equations are solved by the hybridizable discontinuous Galerkin (HDG) method,

where the steady-state governing equations are first written in the following mixed system

Gu + ∇ · [Gc + Gd ] = 0,
P − τ∇U + Π = 0,
E − τ∇Tt + Θ = 0,

W − τ∇Tr + Λ = 0,

(B.4)

where

Gu =
3dr

2Zτ (3 + dr )

⎡⎢⎢⎣
0
0

Tt − Tr

−Tt + Tr

⎤⎥⎥⎦ , Gc =

⎡⎢⎢⎣
U
pt I
0
0

⎤⎥⎥⎦ , Gd =

⎡⎢⎢⎣
0

−
(

P + P⊤
−

2
3 tr (P) I

)
−κt E
−κr W

⎤⎥⎥⎦ ,
Π =

[
HoTσ11 +

1
2 HoTσ22

1
2 HoTσ12

1
2 HoTσ12

1
2 HoTσ11 + HoTσ22

]
,

Θ =
1

[
HoTqt,1

]
, Λ =

1
[

HoTqr,1

]
,

(B.5)
κt HoTqt,2 κr HoTqr,2
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a

f

f

T
d
w

with pt = ρ + Tt the gas pressure associated to the translational motion and I the identity matrix. The auxiliary
variables P , E and W are introduced to approximate the velocity gradient ∇U and the temperature gradients ∇Tt
and ∇Tr . Then the stress tensor and the heat fluxes are evaluated as

σi j = −

(
Pi j + Pj i −

2
3

Pkkδi j

)
, qt,i = −κt Ei , qr,i = −κr Wi . (B.6)

For the HDG discretization, the flow quantities M = [pt ,U, Tt , Tr ] as well as the auxiliary variables P , E and
W are approximated within ∆l in the finite element space V; the traces of the flow quantities M̂ =

[
p̂t , Û, T̂t , T̂r

]
re approximated on the faces Γ in the following piecewise finite element space

W =
{
ψ : ψ |Γc ∈ PK (Γc) ,∀Γc ⊂ Γ

}
. (B.7)

Generally speaking, when moving from the interior of triangle ∆l to its boundary ∂∆l , the traces define the values
of field variables on the boundary. In the HDG, it is assumed that the traces are singled-valued on each face.

The HDG method solves the system in two steps: first, a global problem is set up to determine the traces M̂;
then a local problem with M̂ as boundary condition on ∂∆l is solved element-by-element to obtain the solutions
or M, P , E and W . The local problem is to find (M, P, E,W) ∈ [V]5

× [V]4
× [V]2

× [V]2 such that

(q,Gu)∆l
− (∇q,Gc + Gd)∆l

+ ⟨q, F̂ · n⟩∂∆l = 0,

(r, P)∆l
+ τ (∇ · r,U)∆l

− τ ⟨r · n, Û⟩∂∆l + (r,Π)∆l
= 0,

(t, E)∆l
+ τ (∇ · t, Tt )∆l

− τ ⟨t · n, T̂t ⟩∂∆l + (t,Θ)∆l
= 0,

(t,W)∆l
+ τ (∇ · t, Tr )∆l

− τ ⟨t · n, T̂r ⟩∂∆l + (t,Λ)∆l
= 0,

(B.8)

or all (q, r, t) ∈ [V]5
× [V]4

× [V]2, where the numerical flux F̂ is defined as

F̂ · n =

⎡⎢⎢⎣
U

p̂t −
(

P + P⊤
−

2
3 tr (P) I

)
−κt E
−κr W

⎤⎥⎥⎦ · n +

⎡⎢⎢⎣
1

1
κt

κr

⎤⎥⎥⎦ +

⎡⎢⎢⎣
pt − p̂t

U − Û
Tt − T̂t

Tr − T̂r

⎤⎥⎥⎦ . (B.9)

The global problem is set up by enforcing the continuity of the numerical flux over all the interior faces. It is
stated as: find M̂ ∈ [W]4 such that⟨(

F̂ · n
)+

,w

⟩
Γc

+

⟨(
F̂ · n

)−

,w

⟩
Γc

= 0, on Γc ∈ Γ\∂Ω , (B.10)

for all w ∈ [W]4. Here the superscripts ± denote the numerical fluxes obtained from the triangles on both sides of
the face. Note that the traces on boundary faces are calculated from given boundary values MBC⟨

M̂ − MBC,w
⟩
Γc
, on Γc ∈ Γ ∩ ∂Ω . (B.11)

By assembling the local problem (B.8) and global problem (B.10) and (B.11) over all the triangles and faces,
we can obtain a matrix system of form⎡⎢⎢⎢⎢⎣

AM AP AE AW AM̂
BM BP BE BW BM̂
OM OP OE OW OM̂
QM Q P QE QW Q M̂
YM YP YE YW YM̂

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
M
P
E
W
M̂

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
SM

SP

SE

SW

SM̂

⎤⎥⎥⎥⎥⎦ , (B.12)

where M, P, E, W and M̂ are the vectors of degrees of freedom of the flow properties M, the auxiliary variables
P , E and W , as well as the trace of the flow properties M̂, respectively. Note that the degrees of freedom
for M, P , E and W are grouped together and ordered element-by-element, and the corresponding coefficient
matrix [AM , AP , AE , AW ; BM , BP , BE , BW ; OM , OP , OE , OW ; QM , Q P , QE , QW ] has block diagonal structure.

herefore, we can eliminate M, P , E and W to obtain a reduced linear system involving only M̂. Once M̂ is
etermined, M, P , E and W are reconstructed corresponding to the local problem (B.8) in an element-wise fashion,

hile the stress tensor and the heat flux are calculated according to Eq. (B.6).
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Now, we formulate the boundary condition, i.e., specify hext
s and MBC at ∂∆l when ∂∆l ∩∂Ω ̸= 0. In this work,

he static wall of temperature Tw with fully diffuse reflection and periodic boundary are used. For the diffuse wall,

hext
0 = −

1
2

Tw − 2
√
π

∫
v·n<0

v · nh0 (∆l , v) dv + Tw

(
|v|

2
−

3
2

)
, hext

2 =
dr

2
Tw, (B.13)

here n is the outward unit normal vector of the wall, while MBC are directly calculated from the approximated
elocity distribution functions within ∆l , in order to ensure correct velocity slippage and temperature jump, that is

[ρ,U, Tt ]BC =

∫ [
1, v,

2
3
|v|

2
− 1

]
h0 (∆l , v) dv, [Tr ]BC =

2
dr

∫
h2 (∆l , v) dv. (B.14)

In the case that ∂∆l lies on the periodic boundary, it is treated as an interior face between ∆l and its fictitious
counterpart (an imaginary triangle) across this boundary.

Finally, we estimate the computation effort to solve the system based on the DG discretization at each iteration
step. To solve the kinetic equations, we need to solve Nv1 × Nv2 × Nv3 × Nel linear systems of (B.2), each of which
nvolves 2N el

dof equations with N el
dof = (K + 1) (K + 2) /2 the number of degrees of freedom for a field variable

n a triangle, since the kinetic equations are first discretized by Nv1 × Nv2 × Nv3 discrete velocities in the molecular
pace before the DG discretization on spatial mesh. To evaluate (ϕ,LBCO)∆l

through fast spectral method equipped

ith the FFT-based convolution, additional computational cost of O
(

N el
dof Nel N 2

qua N̄ 3 log N̄ + (N el
dof )2 Nel N̄ 3

)
is

eeded [41], where Nqua is the number of quadrature points for the integrations with respect to the solid angles in
nit sphere and N̄ 3 is the total number of frequencies. To solve the synthetic equations using the HDG method,
he global problem to find the approximations of M̂ is to solve a linear system for about 5N f c N f c

dof unknowns with
N f c

dof = K + 1 the number of degrees of freedom for a trace variable on a face. Note that the global linear system
s sparse of about 5N f c(5N f c

dof )2/2 non-zero entities [50], which is solved by the direct solver PARDISO [51]. For

he local problem, to recover M from M̂ requires a cost of O
(

Nel(5N el
dof )2(15N f c

dof − 1)
)

.
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