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The general synthetic iterative scheme (GSIS) is extended to find the steady-state 
solution of the nonlinear gas kinetic equation, resolving the long-standing problems 
of slow convergence and requirement of ultra-fine grids in near-continuum flows. The 
key ingredient of GSIS is the tight coupling of gas kinetic and macroscopic synthetic 
equations, where the constitutive relations explicitly contain Newton’s law of shear stress 
and Fourier’s law of heat conduction. The higher-order constitutive relations describing 
rarefaction effects are calculated from the velocity distribution function; however, their 
constructions are simpler than our previous work (Su et al., 2020 [28]) for linearized 
gas kinetic equations. On the other hand, solutions of macroscopic synthetic equations 
are used to accelerate the evolution of gas kinetic equation at the next iteration step. A 
rigorous linear Fourier stability analysis of the present schemes in periodic system shows 
that the error decay rate of GSIS can be smaller than 0.5, which means that the deviation 
to steady-state solution can be reduced by 3 orders of magnitude in 10 iterations. Other 
important advantages of the GSIS are: (i) it does not rely on the specific form of Boltzmann 
collision operator, and (ii) it can be solved by sophisticated techniques in computational 
fluid dynamics, making it amenable to large scale engineering applications. In this paper, 
the efficiency and accuracy of GSIS are demonstrated by a number of canonical test cases 
in rarefied gas dynamics, covering different flow regimes.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multi-scale rarefied gas flow exists in many engineering applications, ranging from the aerodynamics of re-entering 
vehicles up in the space to the shale gas transport deep into the underground, including the aerodynamic design of reusable 
vehicles, aerothermodynamics problems during reentry disintegration of large-scale uncontrolled spacecraft [1,2]. Due to the 
significant variation of gas density or characteristic length scale, these flows can span several regimes, e.g., the continuum, 
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slip, transition, and free molecular flow regimes, which are usually categorized by the Knudsen number (Kn, the ratio 
between the mean free path of gas molecules and the characteristic flow length). Gas flow in the continuum regime (Kn <
0.001) can be modeled by the Navier-Stokes-Fourier (NSF) equations. But for rarefied flows (Kn > 0.001), the NSF equations 
are inaccurate due to the failure of linear constitutive relations given by Newton’s law of shear stress and Fourier’s law of 
heat conduction. To model rarefied gas flows that deviate far from thermodynamic equilibrium, the Boltzmann equation, 
which is an integral-differential equation describing the evolution of one-particle velocity distribution function (VDF) at the 
mesoscopic scale, should be used [3]. Although various higher-order macroscopic equations have been derived from the 
Boltzmann equation, using the Chapman-Enskog expansion or Grad’s moment method [4–6], none of them are valid for 
highly rarefied gas flows.

The common numerical methods for rarefied gas flow simulations are the discrete velocity method (DVM) [7] and the 
direct simulation Monte Carlo (DSMC) method [8]. In DVM, the Boltzmann equation is first discretized in the velocity 
and spatial spaces, and then solved deterministically using the computational fluid dynamics (CFD) techniques. In DSMC, 
simulation particles are used to mimic the streaming and collision of real gas molecules. It has been proven that DSMC 
solves the Boltzmann equation for monatomic gas when the number of simulated particles tends to be infinite [9,10]. The 
high-dimensional nature of the Boltzmann equation means that it is much more expensive to be solved compared to the 
NSF equations. For example, DVM requires appropriate discretization of the velocity space, and DSMC needs a large number 
of repeated samples, which lead to expensive computational cost. In particular, for low-Kn flows, DSMC becomes prohibitive 
due to the requirement that the cell size and time step should be respectively smaller than the mean free path and the 
mean collision time, in order to keep the numerical dissipation small [8]. The conventional DVM also suffers from the same 
problem due to the decoupled treatment of molecular collision and streaming [11,12].

The failure of NSF equations for rarefied gas flows and the difficulty in solving the Boltzmann equation for near con-
tinuum flows make the multiscale simulation challenging. Numerous efforts have been devoted to bridging the gap of 
macroscopic and mesoscopic methods. The popular approach is to couple the macroscopic and mesoscopic models under 
the domain-decomposition framework. For example, the CFD-DSMC hybrid approach [13–17] couples the macroscopic and 
mesoscopic models, which are applied in the continuum and rarefied flow regions, respectively. The implementation of such 
hybrid approaches usually involves a buffer region where both macroscopic and mesoscopic models are solved and assumed 
to be valid. In reality, however, these methods face the dilemma of ensuring the validity of NSF equations and the efficiency 
of mesoscopic methods in the coupling region. Recently, a hybrid approach applying the regularized 26-moment equations 
rather than the NSF equations in macroscopic regions is proposed, which can significantly relocate the buffer zone towards 
rarefied flow regions and hence reduces the iteration number for gas kinetic simulations [18].

An alternative approach is to solve gas kinetic equations in the whole computational domain and use appropriate nu-
merical schemes to remove the restrictions on cell size and time step. By coupling the molecular collision and streaming, 
the unified gas kinetic scheme (UGKS) and its variants [19–23] are able to obtain accurate results when the numerical cell 
size is much larger than the mean free path λ (in the near-continuum flow regime, the cell size can be at the order of 
λ
√

Kn in the bulk region) [24]. The implicit version of UGKS further reduces the number of iteration steps [25–27]. The 
recently-developed general synthetic iterative scheme (GSIS) is also one of these promising multiscale methods [28]. It is a 
generalization of the synthetic iterative scheme that is originally developed for solving radiation transport equation in the 
optical thick regions [29] and extended to some special linear rarefied gas flows [30–36]. The GSIS extends the synthetic iter-
ative scheme to general rarefied gas flows, and it is not limited to simple flows where the velocity must be perpendicular to 
the computational domain. The efficiency and accuracy of GSIS is demonstrated in solving two-dimensional (2D) linearized 
gas kinetic equationsin the whole flow regime [28,37], where the linearized gas kinetic equation and macroscopic synthetic 
equations are solved on the same grid alternately, and converged solutions are found within a few dozens of iteration steps. 
In each iteration of gas kinetic equation, the latest macroscopic quantities from the previous solution of macroscopic syn-
thetic equations are used to evaluate the equilibrium distribution function. While in the macroscopic synthetic equations, 
expressions of shear stress and heat flux explicitly include the constitutive laws at the first-order of Kn, i.e. Newton’s law 
and Fourier’s law; the higher-order contributions are directly calculated by taking the velocity moments of VDF [28]. Com-
pared with other multiscale methods [25,38], GSIS does not rely on specific forms of the Boltzmann collision operator [28]. 
In addition, sophisticated CFD techniques can be directly used to solve the gas kinetic equation and macroscopic synthetic 
equations. For example, in the linearized GSIS, the DVM is solved by the upwind method, while the SIMPLE algorithm or 
discontinuous Galerkin method is used to solve the linearized NSF equations with high-order constitutive relations treated 
as source terms [28].

It is the aim of this paper to extend the GSIS to solve nonlinear gas kinetic equations and demonstrate its potential 
for practical applications. The overall framework of the linear GSIS will remain unchanged, i.e., we solve the macroscopic 
synthetic equations and the nonlinear gas kinetic equation alternately in the whole computational domain. Here, we propose 
a new way to construct the nonlinear macroscopic synthetic equations, which are solved by compressible CFD techniques. 
In this paper we use the Shakhov model equation [39] as example, but the method can be used to solve the full BE and 
other model equations straightforwardly, just as we have achieved in the linear GSIS [28].

The remainder of this paper is organized as follows. In Section 2, we introduce the Shakhov model equation, the conven-
tion iterative scheme (CIS) to find the steady-state solutions and its convergence rate. In Section 3, the GSIS for nonlinear 
gas kinetic equation is constructed, and its convergence rate is rigorously calculated based on the Fourier stability analysis. 
In Section 4, the numerical schemes for solving both the gas kinetic and macroscopic equations are presented. In Section 5, 
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several canonical rarefied gas flow problems are carried out to assess the accuracy and efficiency of the nonlinear GSIS. 
Section 6 concludes with final comments and outlook.

2. Gas kinetic equation, CIS and its convergence rate

2.1. Gas kinetic equation

In gas kinetic theory, the gas dynamics is described by the molecular VDF f (t, �r, �ξ), which depends on the time t , the 
spatial location �r = (x, y, z), and the molecular velocity �ξ = (ξx, ξy, ξz). Evolution of the VDF is governed by the Boltzmann 
equation:

∂ f

∂t
+ �ξ · �∇ f = Q( f ), (1)

where �∇ is the spatial gradient operator and Q( f ) is the collision operator; they describe the change of VDF due to the free 
streaming and binary collision of gas molecules. Since the Boltzmann collision operator is a complicated five-fold integral, 
it is usually simplified by the Shakhov model [39]:

Qs( f ) = f s(t,�r, �ξ) − f (t,�r, �ξ)

τ (t,�r) , (2)

where τ = μ/p is the mean collision time, with μ being the shear viscosity and p the pressure of gas. In this paper, 
we assume the viscosity varies with the temperature T by the power law: μ(T ) = μ0(T /T0)

ω , where μ0 is the reference 
viscosity at the reference temperature T0, and ω is a viscosity index. The reference VDF f s takes the following form:

f s(t,�r, �ξ) = f m

[
1 + (1 − Pr)

�q · �C
5pRT

(
C2

RT
− 5

)]
, f m = ρ

(2π RT )3/2
exp

(
− C2

2RT

)
, (3)

where ρ is the mass density, �U is the macroscopic flow velocity, �q is the heat flux, �C ≡ �ξ − �U is the peculiar velocity, R
is the specific gas constant, and Pr is the Prandtl number. For ideal gas, the equation of state is p = ρRT . The macroscopic 
variables including the stress tensor σi j can be calculated by taking moments of the VDF:

ρ(t,�r) =
∫

f (t,�r, �ξ )d3�ξ, ρ �U (t,�r) =
∫

f (t,�r, �ξ )�ξd3�ξ,

σi j(t,�r) =
∫

f (t,�r, �ξ )C〈i C j〉d3�ξ, p(t,�r) = 1

3

∫
f (t,�r, �ξ )C2d3�ξ,

�q(t,�r) = 1

2

∫
f (t,�r, �ξ )�CC2d3�ξ,

(4)

where the angle brackets 〈i, j〉 representing the trace-less part of a tensor, e.g., a〈ib j〉 ≡ aib j − (akbk/3)δi j with δi j being the 
Kronecker delta function.

2.2. The conventional iterative scheme and its efficiency

It is noted that the turbulence is often absent in rarefied gas flows, since the Reynolds is inversely proportional to the 
Knudsen number. For most practical applications, steady-state solutions of the gas kinetic equation are of particular interest, 
which can be obtained from CIS by solving the following equation iteratively:

�ξ · �∇ f k+1 = 1

τ k
[ f s,k − f k+1], (5)

where k is the step of iteration. Note that in order to avoid solving the nonlinear equation, the reference VDF f s is calculated 
from the macroscopic variables of the k-th iteration step, while the VDF f is evaluated at the (k +1)-th iteration. The spatial 
gradient operator can be approximated by the finite difference or discontinuous Galerkin schemes [28,40], and the whole 
system can be easily solved by sweeping procedures [28,41,42].

We use the Fourier stability analysis to investigate the efficiency of CIS, that is, to see how fast the error decays during 
iterations. Since the Fourier stability analysis relies on linear systems, we rewrite the collision operator (3) in the following 
linearized one:

f s =
[
� + 2 �U · �ξ + T

(
ξ2 − 3

2

)
+ 4

15
�q · �ξ
(

ξ2 − 5

2

)]
feq, (6)

where the Prandtl number is chosen as 2/3, feq = exp
(−ξ2

)
/π1.5 is the global equilibrium VDF, and the macroscopic 

quantities deviated from their corresponding equilibrium values are:
3
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� =
∫

f d3�ξ, �U =
∫

�ξ f d3�ξ, T =
∫ (

2

3
ξ2 − 1

)
f d3�ξ,

σi j = 2
∫

ξ〈iξ j〉 f d3�ξ, �q =
∫

�ξ
(

ξ2 − 5

2

)
f d3�ξ .

(7)

Note that after linearization the mean collision time τ in Eq. (2) is a constant, which has the meaning of Knudsen number. 
More details can be found in Ref. [28].

We define the error functions between VDFs at two consecutive iterations as:

Y k+1(�r, �ξ ) = f k+1(�r, �ξ ) − f k(�r, �ξ ), (8)

and the error functions for macroscopic quantities M = [�, �U , T , �q ] between two consecutive iteration steps:

�k+1(�r ) = Mk+1(�r ) − Mk(�r ) =
∫

Y k+1(�r, �ξ )φ(�ξ )d3�ξ, (9)

where

φ(�ξ ) =
[

1, ξx, ξy,
2

3
ξ2 − 1, ξx

(
ξ2 − 5

2

)
, ξy

(
ξ2 − 5

2

)]
. (10)

To determine the error decay rate e we perform the Fourier stability analysis by seeking the eigenfunctions Ȳ (�ξ ) and 
α = [α�, �αU , αT , �αq] of the following forms:

Y k+1(�r, �ξ ) = ekȲ (�ξ )exp(i �θ · �r ),

�k+1(�r ) = ek+1α exp(i �θ · �r ),
(11)

where i is the imaginary unit and �θ = (θx, θy, θz) is the wave vector of perturbance satisfying |�θ | = 1. The slow convergence 
occurs when the error decay rate |e| approaches one, where the error is nearly the same when compared to that in the 
previous iteration. The fast convergence is realized when |e| < 1 and approaches zero.

The convective operator in Eq. (5) is kept intact when calculating the error decay rate; the convergence rate of the 
spatially-discretized gas kinetic equation will be shown in numerical simulations in Section 5. Obviously, from Eqs. (9)
and (11) we have

eα =
∫

Ȳ (�ξ )φ(�ξ )d3�ξ, (12)

and from Eqs. (5), (6), (8), and (11), we obtain the following expressions for Ȳ (�ξ ):

Ȳ (�ξ ) =
α� + 2�αU · �ξ + αT

(
ξ2 − 3

2

)
+ 4

15 �αq · �ξ (ξ2 − 5
2

)
1 + iτ �θ · �ξ feq.

(13)

Finally, multiplying Eq. (13) with φ(�ξ) and integrating the resultant equations with respect to �ξ , we obtain 8 linear 
algebraic equations for 8 unknown elements in α with the help of Eq. (12). These algebraic equations can be written in the 
matrix form as

C8α
	 = eα	, (14)

where the superscript 	 is the transpose operator. The error decay rate can be obtained by numerically computing the 
eigenvalues of matrix C8 and taking the maximum absolute value of e; the result as a function of the Knudsen number is 
shown in Fig. 1. It is clear that when the Knudsen number τ is large, e goes to zero so that the error decays quickly. This 
means that CIS is very efficient for highly rarefied gas flows. On the other hand, e → 1 when τ → 0, which means that it is 
hard to obtain converged solutions by using CIS in the near-continuum flow regime.

3. The general synthetic iterative scheme

The GSIS uses the following strategy to accelerate the iteration of conventional DVM schemes for gas kinetic equa-
tions [28]: on top of the CIS, it adds macroscopic synthetic equations to boost the convergence to steady-state solutions 
in the near-continuum flow regime. The flowchart of GSIS is presented in Fig. 2: after completing the CIS at the k-th step, 
the nonlinear macroscopic synthetic equations are solved to the converged state by sophisticated CFD techniques, with the 
boundary conditions and high-order constitutive relations from the CIS. The obtained macroscopic quantities are fed back 
to the CIS, which provides macroscopic quantities and VDFs for the CIS to execute at the (k + 1)-th step. The details of 
constructing nonlinear macroscopic equations for GSIS are given below.
4
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Fig. 1. The error decay rate as a function of the Knudsen number τ in both CIS and GSIS, calculated from the linearized Shakhov model based on the 
Fourier stability analysis. In GSIS, different threshold Knudsen numbers are considered, see Eq. (27).

Fig. 2. Flowchart of the computational procedures in GSIS. HoT stands for the high-order terms and BC stands for boundary conditions. LU-SGS is the 
implicit time-stepping procedure solving the macroscopic synthetic equations after each DVM step.

3.1. Macroscopic synthetic equations

For generality we consider the derivation of macroscopic synthetic equations from the full Boltzmann equation. By mul-
tiplying Eq. (1) with 1, �ξ , and ξ2, and integrating them with respect to d3ξ , we have:

∂ρ

∂t
+ �∇ · (ρ �U ) = 0,

∂ρ �U
∂t

+ �∇ · (ρ �U �U ) + �∇p + �∇ · σ = 0,

∂ρE

∂t
+ �∇ ·

(
ρE �U + p �U + �U · σ + �q

)
= 0,

(15)

where E = cvT + U 2/2 is the total energy with cv = 3R/2 being the heat capacity at constant volume. This equation is 
not closed because the shear stress and heat flux cannot be expressed in terms of the density, velocity and energy. The 
Chapman-Enskog expansion to the first-order of Knudsen number gives the NSF constitutive relations [3]:

σi j ≈ σi j,NSF = −2μ
∂U 〈i

∂r j〉
= −μ

(
∂Ui

∂r j
+ ∂U j

∂ri

)
+ 2

3
μ �∇ · �Uδi j,

�q ≈ �qNSF = −κ �∇T ,

(16)

where the heat conductivity κ is related to the viscosity and Pr by κ = μcp/ Pr, with cp = 5R/2 being the heat capacity at 
constant pressure.

However, under rarefied condition, the approximation (16) is not adequate. To be consistent with the gas kinetic equation, 
the shear stress tensor and heat flux have to be computed from the VDF itself, without any truncation. In the linear 
5
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GSIS [28], the shear stress and heat flux used in the macroscopic synthetic equations are expressed in terms of the first-
order NSF constitutive relation and higher-order terms (HoTs), where the explicit separation of the NSF constitutive relation 
out of the diffusive fluxes is essential to achieve fast convergence [43]. Here we do the same for nonlinear GSIS:

σi j = σi j,NSF + HoTσi j ,

�q = �qNSF + HoT�q.
(17)

In the linear GSIS, HoTs are calculated from the spatial derivatives of even higher-order VDF moments than the heat 
flux and stress tensor [28], which is equivalent to using the governing equations of stress tensor and heat flux in Grad’s 
13-moment systems but close these moment equations using the VDF from CIS, rather that the one reconstructed using 
low-order macroscopic quantities. In the nonlinear GSIS here, we can also apply this strategy directly. Multiplying the 
steady-state kinetic equation with C〈i C j〉 and �C C2/2, and integrating it in the velocity space, we have:

σ ∗
i j = −μ∗

p∗

∫
C∗

〈i C
∗
j〉�ξ · �∇ f ∗d3�ξ + μ∗

p∗

∫
C∗

〈i C
∗
j〉[Q( f ∗) −Qs( f ∗)]d3�ξ,

�q ∗ = − μ∗

2p∗ Pr

∫
�C ∗(C∗)2�ξ · �∇ f ∗d3�ξ + μ∗

2p∗ Pr

∫
�C ∗(C∗)2[Q( f ∗) −Qs( f ∗)]d3�ξ, (18)

where the superscript “*” means that both the VDF and macroscopic quantities are obtained from CIS. It should be noted 
that the last terms in each equation are much smaller than the corresponding underlined terms. For example, for the 
Boltzmann collision operator of Maxwell molecules the last term in each equation vanishes [3].

To obtain the HoTs in Eq. (17), we simply subtract the NSF parts from the complete starred stress and heat flux, yielding

HoTσi j = σ ∗
i j − σ ∗

i j,NSF,

HoT�q = �q ∗ − �q ∗
NSF,

(19)

with the NSF parts σ ∗
i j,NSF and �q ∗

NSF calculated from NSF constitutional relations using the starred macroscopic variables. 
This will be called Scheme I in the following paper.

Alternatively, instead of using the derivatives of higher-order moments to calculate σ ∗
i j and �q ∗ , we can calculate them 

directly according to their definitions. Then the HoTs are calculated as

HoTσi j =
∫

f ∗C∗
〈i C

∗
j〉d

3 �C ∗ − σ ∗
i j,NSF,

HoT�q = 1

2

∫
f ∗ �C∗(C∗)2d3 �C ∗ − �q ∗

NSF,

(20)

which will be called Scheme II in the following paper.

Remark 1. It is clear that Scheme I is much more complicated than Scheme II, because (i) it involves the calculation of 
Boltzmann collision operator in the general case and (ii) the underline terms contain spatial derivations which may lead to 
numerical instabilities around sharp solid corners, while Scheme II does not have this problem. Therefore, if both scheme 
share the similar value of error decay rate, Scheme II will be used in our numerical simulations. In addition, Scheme II can 
be directly applied to solve the Boltzmann equations involving multi-species and chemical reactions, where the Scheme I 
will be extremely complicated.

3.2. Convergence rate of GSIS: scheme II

We analyze the error decay rate of the GSIS based on the linearized Shakhov model and Scheme II; a similar but much 
simpler analysis for the linearized Bhatnagar–Gross–Krook model is given in Ref. [43]. In GSIS, when f k is known, f ∗ is 
obtained by solving Eq. (5) with k + 1 replaced by ∗. Then the macroscopic quantities at the (k + 1)-th iteration step are 
obtained by solving the following synthetic equations (note that the time derivative is dropped for steady-state solutions):

∂Uk+1
i

∂ri
= 0,

∂�k+1

∂ri
+ ∂T k+1

∂ri
+ ∂σ k+1

i j

∂r j
= 0,

∂qk+1
i

∂ri
= 0,

(21)

with
6



L. Zhu, X. Pi, W. Su et al. Journal of Computational Physics 430 (2021) 110091
σ k+1
i j = 2

∫ (
ξiξ j − ξ2

3
δi j

)
f ∗d3�ξ + 2τ

∂U∗
〈i

∂r j〉
− 2τ

∂Uk+1
〈i

∂r j〉
,

�q k+1 =
∫

�ξ
(

ξ2 − 5

2

)
f ∗d3�ξ + 15

8
τ �∇T ∗ − 15

8
τ �∇T k+1,

(22)

which are the linearized version of Eqs. (15), (17) and (20). Therefore, to calculate the convergence rate of GSIS, the error 
functions in Eqs. (8), (9), and (11) are redefined as

Y ∗(�r, �ξ ) = f ∗(�r, �ξ ) − f k(�r, �ξ ) = ekȲ (�ξ )exp(i �θ · �r ),

�k+1(�r ) = Mk+1(�r ) − Mk(�r ) = ek+1α exp(i �θ · �r ),
(23)

where the solution of Ȳ (�ξ ) is still given by Eq. (13). Note that the definitions for � remain unchanged, but in GSIS they are 
calculated from the macroscopic synthetic equations, rather than from the VDF Y ∗ .

With Eqs. (13), (21) (22) and (23), we obtain the following 8 linear algebraic equations for 8 unknowns in αM :

e(iθxαUx + iθyαU y + iθzαU z ) = 0,

e[iθx(α� + αT ) + ταux ] = S2,

e[iθy(α� + αT ) + ταu y ] = S3,

e[iθz(α� + αT ) + ταuz ] = S4,

e(iθxαqx + iθyαqy + iθzαqz ) = 0,

e

(
15

8
iθxταT + αqx

)
= S6,

e

(
15

8
iθyταT + αqy

)
= S7,

e

(
15

8
iθzταT + αqz

)
= S8,

(24)

where the source terms, due to the HoTs in Eq. (22), are also linear functions of αM :

S2 =
∫ [

τξx − 2iθx

(
ξ2

x − ξ2

3

)
− 2iθyξxξy − 2iθzξxξz

]
Ȳ (�ξ )d3�ξ,

S3 =
∫ [

τξy − 2iθy

(
ξ2

y − ξ2

3

)
− 2iθxξxξy − 2iθzξyξz

]
Ȳ (�ξ )d3�ξ,

S4 =
∫ [

τξz − 2iθz

(
ξ2

z − ξ2

3

)
− 2iθxξxξz − 2iθyξyξz

]
Ȳ (�ξ )d3�ξ,

S6 =
∫ [

15

8
iθxτ

(
2

3
ξ2 − 1

)
+ ξx

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ,

S7 =
∫ [

15

8
iθyτ

(
2

3
ξ2 − 1

)
+ ξy

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ,

S8 =
∫ [

15

8
iθzτ

(
2

3
ξ2 − 1

)
+ ξz

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ .

(25)

The error decay rate of the scheme II can be obtained by solving Eqs. (24) and (25). That is, these equations are firstly 
rewritten in the matrix form as L8eα	 = R8α

	 , where L8 and R8 are two 8 × 8 matrices. By introducing G1 = L−1
8 R8 and 

numerically computing its eigenvalues we obtain the error decay rate e of GSIS, see the results in Fig. 1. It is observed 
that the value of |e| is much reduced when τ → 0, which demonstrates that the GSIS is able to boost convergence for 
near-continuum flows. However, the error decay rate increases to one when τ → ∞.

To fix this problem, macroscopic quantities at the (k+1)-th iteration step are not all updated by the solution Msyn from 
macroscopic synthetic equations, when τ is large. Rather, they are updated in the following manner

Mk+1(�r ) = βMsyn + (1 − β)M∗(�r ), (26)

where the relaxation parameter β is chosen as

β = min(τ , τth)
, (27)
τ

7
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with τth being the threshold Knudsen number. That is, β = 1 when the Knudsen number is smaller than τth; when τ > τth, 
β gradually decreases to zero as the Knudsen number approaches infinity. The error decay rate of this GSIS can be obtained 
by computing the eigenvalue of the matrix G = βL−1

8 R8 + (1 − β)C8, where the results at the threshold Knudsen number 
of values 1 and 5 are shown in Fig. 1. Clearly, by choosing approximate value of β , we can make the maximum error decay 
rate less than 0.5 for all Knudsen number; this means that the error can be reduced by at least three orders of magnitude 
in 10 iterations. Thus, theoretically, GSIS can reach fast convergence in the whole range of Knudsen number.

3.3. Convergence rate of GSIS: scheme I

Schemes I and II differ only in HoTs. Since in Scheme I the shear stress and heat flux for the linearized Shakhov model 
equation are σ ∗

i j = −2τ
∫

ξ〈iξ j〉�ξ · �∇ f ∗d3�ξ and q ∗
i = − 3

2 τ
∫

ξi
(
ξ2 − 5

2

) �ξ · �∇ f ∗d3�ξ , Eq. (25) is modified as

S2 = τ

∫ [
ξx − 2�(θxξ〈xξx〉 + θyξxξy + θzξxξz)

]
Ȳ (�ξ )d3�ξ,

S3 = τ

∫ [
ξy − 2�(θxξxξy + θyξ〈yξy〉 + θzξyξz)

]
Ȳ (�ξ )d3�ξ,

S4 = τ

∫ [
ξz − 2�(θxξxξz + θyξyξz + θzξ〈zξz〉)

]
Ȳ (�ξ )d3�ξ,

S6 = iτ

∫ [
15

8
θx

(
2

3
ξ2 − 1

)
− 3

2
�ξx

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ,

S7 = iτ

∫ [
15

8
θy

(
2

3
ξ2 − 1

)
− 3

2
�ξy

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ,

S8 = iτ

∫ [
15

8
θz

(
2

3
ξ2 − 1

)
− 3

2
�ξz

(
ξ2 − 5

2

)]
Ȳ (�ξ )d3�ξ,

(28)

where � = θxξx + θyξy + θzξz .
With Eqs. (24), (28), (26) and (27), we obtain the error decay rate of Scheme I, which is also shown in Fig. 1. It is seen 

that when the Knudsen number τ → 0, the error decay rate goes to zero, which means that the GSIS with scheme I is very 
efficient in obtaining the steady-state solution of the gas kinetic equations.

Remark 2. The Fourier stability analysis is conducted in the spatial periodic systems. In reality, however, solid walls are 
always present, and the Knudsen layer (exists in a region within a few mean free path away from the wall) always makes 
the effective Knudsen number τ ∼ 1. Therefore, the maximum error decay rate in the whole range of Kn is a more important 
indicator. In this sense, from Fig. 1 we see that schemes I and II have the similar efficacy in boosting the convergence rate 
to steady-state solutions. We therefore choose Scheme II over Scheme I because it is simpler and can be easily applied to 
other Boltzmann collision operators.

4. Numerical schemes

4.1. The DVM scheme on curved structured mesh

For irregular computational domain, general structured body-fitted meshes are preferred. In order to use the sophisti-
cated CFD techniques on such meshes, we keep the time derivative in the gas kinetic equation. Using the forward Euler 
scheme for the time derivative and applying implicit treatment to the convection term and f in the collision term, we have

f k+1 − f k

�t
+ �ξ · �∇ f k+1 = 1

τ k
[ f s,k − f k+1], (29)

which, in order to enable a simple matrix-free implicit solving of the semi-discretized equation, is rewritten in the so-called 
“delta” form,(

1

�t
+ 1

τ k

)
� f k + �ξ · �∇� f k = 1

τ k
[ f s,k − f k] − �ξ · �∇ f k, (30)

by introducing the incremental VDF � f k = f k+1 − f k .
The gradient operators �∇ at the left-hand-side (LHS) and right-hand-side (RHS) of Eq. (30) will be calculated by the 

first-order upwind scheme and a second-order scheme, respectively [44]. With such a treatment, the implicit part allows 
a simple matrix-free solving with the Lower-Upper Symmetric Gauss–Seidel (LU-SGS) technique [45], while the converged 
solution will be second-order accurate.
8
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We apply the finite volume method to solve the above gas kinetic equation. After the volume integration and applying 
the Gauss theorem, for each cell indexed by (i, j) on a structured grid, we have(

1

�t
+ 1

τ k
i, j

)
�i, j� f k

i, j +
∑

m

�Sm · �ξ� f k
m = �i, j

τ k
i, j

( f s,k
i, j − f k

i, j) −
∑

m

�Sm · �ξ f k
m, (31)

where �i, j is the cell’s volume, m is the index of the faces belonging to the cell, and �Sm is the face’s normal vectors pointing 
out of the cell with its magnitude being the face area. Variables with subscript i, j are the cell averaged quantities on the 
cell center, while � f k

m and f k
m are reconstructed variables on the cell faces. For the reconstruction of � f k

m , the first-order 
upwind scheme is applied: at the left face of cell � f k

i−1/2, j = � f k
i−1, j if �ξ · �Si−1/2, j > 0, otherwise it is � f k

i−1/2, j = � f k
i, j . For 

the reconstruction of f k
m , various second-order limited interpolation scheme can be applied. In this study, fm is calculated 

from the upwind cell center by first-order Taylor expansion, where the slope is calculated with van Leer slope limiter.
With the above discretization, the linear equation system for all cells can be written in the following matrix form,

Di, j� f k
i, j + Lx

i, j� f k
i−1, j + Ux

i, j� f k
i+1, j + Ly

i, j� f k
i, j−1 + Uy

i, j� f k
i, j+1 = RHSi, j (32)

where the matrix elements are

Di, j = �i, j

�t
+ �i, j

τ k
i, j

+ |�Si · �ξ | + |�S j · �ξ |, (33)

Lx
i, j = 1

2
�Si · �ξ

[
1 − sign(�ξ · �ni)

]
, Ly

i, j = 1

2
�S j · �ξ

[
1 − sign(�ξ · �n j)

]
, (34)

Ux
i, j = −1

2
�Si · �ξ

[
1 + sign(�ξ · �ni)

]
, Uy

i, j = −1

2
�S j · �ξ

[
1 + sign(�ξ · �n j)

]
, (35)

with �n = �S/|�S| and sign(x) the sign function, returns 1 if x > 0 and −1 otherwise. Here, the approximation �Si =
1
2

(�Si−1/2 + �Si+1/2

)
≈ �Si−1/2 ≈ −�Si+1/2 is assumed. By applying the LU-SGS technique to Eq. (32), the incremental VDF 

is solved by a forward sweeping and a backward sweeping:

Forward: Di, j� f ∗
i j + Lx

i, j� f ∗
i−1, j + Ly

i, j� f ∗
i, j−1 = RHSi j, (36)

Backward: � f k
i j = � f ∗

i j − D−1
i, j Ux

i, j� f ∗
i+1, j − D−1

i, j Uy
i, j� f ∗

i, j+1, (37)

and the VDF is then updated as f k+1
i, j = f k

i, j + � f k
i, j .

4.2. Numerical scheme for the macroscopic synthetic equations

The macroscopic synthetic equations (15) can be viewed as the compressible NSF equation with HoTs as constant source 
terms, where the steady-state solution can be obtained by using sophisticated time-implicit schemes and shock capturing 
schemes. Again, we use the LU-SGS technique to handle the implicit time stepping in a matrix-free manner.

Integrating Eq. (15) in a control volume � of the finite volume mesh and applying the Gauss theorem, we have

∂

∂t

∫
�

�W d� +
∮
∂�

[�Fc + �Fv(σ NSF, �qNSF)
]

d�S = −
∮
∂�

�F HoT
v d�S, (38)

where �W is the vector of conservative variables and �Fc is the vector of convective fluxes:

�W =

⎡
⎢⎢⎣

ρ
ρUx

ρU y

ρE

⎤
⎥⎥⎦ , �Fc =

⎡
⎢⎢⎣

ρV
ρUx V + nx p/2
ρU y V + ny p/2

ρH V

⎤
⎥⎥⎦ . (39)

Here, H = E + p/ρ , V = �U · �n with �n being the unit normal vector of d�S , and

�Fv(σ , �q ) =

⎡
⎢⎢⎣

0
nxσxx/2 + nyσxy/2
nxσyx/2 + nyσyy/2

nx�x(σ , �q ) + ny�y(σ , �q )

⎤
⎥⎥⎦ , (40)

where Fx(σ , �q ) = −Uxσxx − U yσxy + qx and Fy(σ , �q ) = −Uxσyx − U yσyy + qy . In the RHS of Eq. (38), �F HoT
v ≡ �Fv(σ ∗, �q ∗) −

�Fv(σ ∗
NSF, �q∗

NSF) is the viscous flux due to the HoTs in shear stress and heat flux. The starred variables have the same meaning 
as in Eq. (19).
9
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Applying the implicit scheme for the fluxes at the LHS of Eq. (38), we have, for each cell,⎡
⎣( �

�tp

)
i, j

�I +
(

∂ �R
∂ �W

)
i, j

⎤
⎦� �W n

i, j = −�Rn
i, j + �RHoT

i, j , (41)

where �tp is the pseudo time step, �I is the identity matrix, and �R stands for the residues including one in the NSF equation 
and one due to HoTs:

�Rn
i, j =

∑
m∈N(i, j)

[�F n
c + �Fv(σ

n
NSF, �q n

NSF)]m�Sm,

�RHoT
i, j =

∑
m∈N(i, j)

(�F HoT
v )m�Sm,

(42)

with the index m looping through all the faces of the current cell, represented by N(i, j). As the iteration converges (� �W n

approaches to zero), the RHS of Eq. (41) also approaches to zero.
The LU-SGS technique employs a factorization of the implicit operator in Eq. (41) as

(D + L)D−1(D + U)� �W n = −�Rn + �RHoT. (43)

Note that the symbols D, L and U are different from the ones in the DVM (32). The solution of the linear equation system 
in terms of � �W n can be easily executed as a forward sweep and a backward sweep procedure on a structured mesh [46], 
as only the lower- or upper-half matrix coefficients are non-zero,

Forward: (D + L)� �W (1) = −�Rn + �RHoT,

Backward: (D + U)� �W n = D� �W (1),
(44)

where, for each cell, the lower, the upper and diagonal matrix elements are:

Li, j = ( Ā+ + Āv
)

i−1 �Si−1/2 + ( Ā+ + Āv
)

j−1 �S j−1/2,

Ui, j = ( Ā− − Āv
)

i+1 �Si+1/2 + ( Ā− − Āv
)

j+1 �S j+1/2,

Di, j = �

�t
I + ( Ā− − Āv

)
�Si−1/2 + ( Ā− − Āv

)
�S j−1/2

+ ( Ā+ + Āv
)
�Si+1/2 + ( Ā+ + Āv

)
�S j+1/2,

(45)

with Ā± being the positive and negative convective flux Jacobian due to the flux-vector splitting scheme, and Āv the viscous 
flux Jacobian. During the forward and backward sweeps, the product of convective flux Jacobian and change of conservation 
variables can be approximated as [46]:

( Ā±�S)� �W n ≈ 1

2

(
� F̄ n

c �S ± rA Ī� �W n
)

, rA = w�̂c, (46)

where �F is the change of convective flux due to the change of conservative variables, �̂c is the convective flux Jacobian’s
spectral radius, and w is the over-relaxation factor in the range of 1 < w ≤ 2. A large w increases the stability but slows 
down the convergence speed. In this paper, we use w = 1. Depending on the orientation of the interface (I- or J -direction), 
�̂c is evaluated as

�̂I
c = (| �Ui, j · �nI | + ci, j)�S I and �̂

J
c = (| �Ui, j · �n J | + ci, j)�S J , (47)

where �nI = (�ni+1/2, j + �ni−1/2, j
)
/2, �S I = (�Si+1/2, j + �Si−1/2, j

)
/2 with ci, j being the sound of speed and �ni±1/2, j being 

the right/left face normal vector. Similar definition is used for the J -oriented face. The viscous flux Jacobian is approximated 
by its spectral radius, i.e. Āv�S ≈ �̂v, and for the I- or J -oriented faces,

�̂I
v = max

(
4

3ρi, j
,

γ

ρi, j

)(μi, j

Pr

) (�S I )
2

�i, j
, and �̂

J
v = max

(
4

3ρi, j
,

γ

ρi, j

)(μi, j

Pr

) (�S J )
2

�i, j
, (48)

where γ = cp/cv.
For the explicit calculation of viscous flux in Rn , we use the MUSCL3 reconstruction scheme and 2nd-order Roe flux 

scheme, while the 2nd-order central scheme is adopted for the viscous flux computation. The time step is determined 
according to

�tp = ζ
�

�̂I
c + �̂

J
c + �̂I

v + �̂
J
v

, (49)

where ζ is the Courant-Friedrichs-Lewy (CFL) number.
10
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4.3. Updating of macroscopic variables and correction to the VDF

The converged solution of macroscopic variables of the synthetic equations is used in the next DVM step to calculate the 
equilibrium VDF. A relaxation coefficient 0 ≤ β < 1 is introduced in the updating processes (26) to improve the convergence 
and stability of GSIS for high Kn flows,

�W k+1 = β �W ′ + (1 − β) �W k,∗, σ k+1 = βσ ′ + (1 − β)σ k,∗, �qk+1 = β�q ′ + (1 − β)�q k,∗, (50)

where �W ′ , σ ′ and �q are the converged macroscopic solution of the inner loop between the k- and (k + 1)-th DVM steps, 
and �W k,∗ , σ k,∗ , �qk,∗ are calculated by numerical quadratures after k-th DVM step. In the practical numerical simulations, 
the relaxation coefficient is adapted according to a local NSF breakdown parameter [47]:

β = 1 − min(1, ENSF
c ), ENSF

c =
√√√√∫ ( f − f G13)d3�ξ∫

( f m)2d3�ξ , (51)

where f G13 is the VDF reconstructed following the one used in Grad 13-moment method. For continuum flows, ENSF
c

approaches to zero and β approaches to 1, which means the macroscopic variables in the DVM are almost entirely replaced 
by the solution of macroscopic synthetic equations. For high Kn flows, ENSF

c may be higher than 1 and β becomes zero, 
so the solution of macroscopic synthetic equations is not used in the DVM and the GSIS reduces to CIS which is already 
efficient for these flows.

The VDF is also adjusted to reflect the changes of leading-order moments �W . This is achieved by replacing the equilib-
rium part of the VDF with the one computed from the new moments, while keeping the non-equilibrium part:

f k+1 = f k + β
[

f m( �W k+1) − f m( �W k,∗)
]
. (52)

4.4. Overview of the GSIS algorithm

Here, we summarize the proposed GSIS algorithm for nonlinear gas kinetic equation. The overall computing procedure is 
a nested loop, with the outer and inner loop indexes as k and n, as illustrated in Fig. 2. The outer loop solves the gas kinetic 
equation using the iterative or time-stepping DVM method, and the inner loop solves the macroscopic synthetic equations 
using the LU-SGS technique. Each inner loop starts from the latest macroscopic state, together with HoTs and boundary 
conditions from the current step in the outer loop. The step-by-step procedures are summarized as below,

1. Initialize macroscopic variables in both the DVM and macroscopic equation solvers;
2. Initialize VDF in the DVM solver;
3. Solve the NSF equations (the macroscopic equation with HoTs as zero) to its converged state.
4. Execute one iterate/time step in the DVM solver, in which the latest converged macroscopic variables are used to 

compute equilibrium;
5. Calculate the HoTs of shear stress and heat flux from VDF via Eq. (20). Calculate the macroscopic boundary conditions 

from the VDF on the boundaries;
6. Solve the macroscopic synthetic equation (with the HoTs and the boundary conditions from Step 5) using the LU-SGS 

technique to the converged state;
7. Update the macroscopic variables and VDF in DVM from the solution in Step 6;
8. Repeat the steps 4 to 7 until meeting the defined convergence criterion of the outer loop via Eq. (50) and (52).

5. Numerical test cases

Several 1D and 2D flows are simulated to investigate accuracy and efficiency of the nonlinear GSIS. In the 1D Fourier 
and Couette flow, the macroscopic synthetic equations can be greatly simplified and solved without resorting to the LU-
SGS technique discussed in Sec. 4.2. The 2D cases include the lid-driven cavity flow and the supersonic flow past a cylinder, 
where the gas kinetic equation is solved by the upwind finite difference method and the method in Section 4.1, respectively. 
In all the test cases, Pr = 2/3 and the viscosity index ω is 0.81. All the parameters used in the CIS and GSIS simulations are 
the same, thus we can directly compare their efficiency and accuracy.

5.1. Reduced Shakhov model equation

For 2D flows, the VDF can be reduced to save computational cost. We introduce the following two reduced VDFs as:

g(t, x, y, ξx, ξy) =
∫

f (t,�r, �ξ )dξz,

h(t, x, y, ξx, ξy) =
∫

ξ2
z f (t,�r, �ξ )dξz,

(53)
11
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whose dynamics are described by the following reduced Shakhov model equation:

∂�

∂t
+ �ξ · �∇� = 1

τ
(�s − �), (54)

with � ≡ [g, h]	 , �s ≡ [gs, hs]	 , and

gs = ρ

2π RT
exp

(
− C2

2RT

)[
1 + (1 − Pr)

�q · �C
5pRT

(
C2

RT
− 4

)]
, (55)

hs = ρ

2π RT
exp

(
− C2

2RT

)[
1 + (1 − Pr)

�q · �C
5pRT

(
C2

RT
− 2

)]
RT . (56)

Note that now all the vectors have only two components, e.g. �ξ = (ξx, ξy), �C = (Cx, C y), and C2 = C2
x + C2

y . The macro-
scopic variables are therefore calculated as:

ρ =
∫

gd2�ξ, ρ �U =
∫

g�ξd2�ξ, σi j =
∫ (

gCi C j − gC2 + h

3
δi j

)
d2�ξ,

p = 1

3

∫
(gC2 + h)d2�ξ, �q = 1

2

∫
�C(gC2 + h)d2�ξ .

(57)

5.2. Heat transfer between two parallel plates

Consider the steady heat transfer of gas confined between two vertically placed static parallel plates located at xL = 0
and xR = 1. The left and right plates have constant temperatures of TL = 0.75 and TR = 1.25, respectively (note that the 
temperature has been normalized by the reference temperature T0). The boundary conditions of the VDF at xL and xR are

g(�ξ)|xL,ξx>0 = ρL

2π RTL
exp

(
− ξ2

2RTL

)
, h(�ξ)|xL,ξx>0 = ρL

2π
exp

(
− ξ2

2RTL

)
, (58a)

g(�ξ)|xR,ξx<0 = ρR

2π RTR
exp

(
− ξ2

2RTR

)
, h(�ξ)|xR,ξx<0 = ρR

2π
exp

(
− ξ2

2RTR

)
, (58b)

where

ρL = − 4

π
√

2RTL

∫
ξx<0

ξx f d2�ξ, ρR = 4

π
√

2RTR

∫
ξx>0

ξx gd2�ξ . (59)

For this 1D problem, we can easily solve the steady-state synthetic macroscopic equation as follows. We know that 
�U = 0, qy = 0, σxy = σyx = 0, ∂φ/∂ y = 0, where φ is any macroscopic quantity. The synthetic equation together with the 
equation of state for ideal gas can then be simplified to a system of equations for ρ , T , p, σxx and qx:

∂ p

∂x
+ ∂σxx

∂x
= 0, (60a)

∂qx

∂x
= 0, (60b)

σxx = HoTσxx , (60c)

qx = HoTqx − κ
∂T

∂x
, (60d)

p = ρRT . (60e)

The boundary values of the variables are provided after each DVM step. The HoTs are also computed from the VDF according 
to Eq. (20) after the last DVM step as

HoTσxx = 1

3

∫ (
2g∗C∗2

x − g∗C∗,2
y − h∗)d2�ξ, (61a)

HoTqx = 1

2

∫
C∗

x

(
g∗C∗,2 + h∗)d2�ξ + κ∗ ∂T ∗

∂x
, (61b)

where starred variables including T ∗ , k∗ , and �C ∗ ≡ �ξ − �U ∗ are obtained using the VDF of the last DVM step. Equation (60)
can be sequentially solved to calculate σxx using Eq. (60c); qx , Eq. (60b); T , Eq. (60d); p, Eq. (60a); and ρ , Eq. (60e).
12



L. Zhu, X. Pi, W. Su et al. Journal of Computational Physics 430 (2021) 110091
Fig. 3. Temperature (a) and density (b) profiles of the Fourier flow at different Kn. The solid lines and circles represent the CIS and GSIS results, respectively.

Fig. 4. Convergence history of both GSIS and CIS in the simulation of nonlinear Fourier flow.

The Knudsen number is defined as Kn = √
πμC0/(2p0 L0) with μ = Prk/cp, where the reference pressure is p0 =

ρ0 RT0 = 0.5, the reference density is ρ0 = 1, the specific gas constant is R = 0.5, the reference temperature is T0 = 1, 
the reference length L0 = xR − xL = 1, and the reference velocity C0 = √

2RT0 = 1.
The velocity space in both ξx and ξy directions is truncated to [−6, 6], and the discrete velocities are distributed on a 

non-uniform Cartesian grid with size of N2
V , and the grid line positions are determined by the following rule [48]:

ξx, ξy = 6

(Nv − 1)3

[
(−Nv + 1)3 , (−Nv + 3)3 , · · · , (Nv − 1)3

]
, (62)

where NV = 32. Such a non-uniform grid can accurately capture the discontinuity of VDF near the origin of the velocity 
space, which appears in the vicinity of solid walls when the Knudsen number is large. The spatial grid points are distributed 
in the x-direction non-uniformly according to the following rule:

xi = s3
i (10 − 15si + 6s2

i ), with si = i/2(Nx − 1), i = 0,1, . . . , Nx − 1, (63)

where Nx = 50 is the number of grid points. The convergence criterion for the DVM iteration is that the volume-weighted 
relative change of temperature between two successive iterations satisfies

Ek =
√∑

i(T k
i − T k−1

i )2�xi√∑
i(T k−1

i )2�xi

< 1 × 10−8. (64)

The temperature field is chosen because it converges slower than other macroscopic fields.
Fig. 3 shows the converged temperature and density profiles calculated by GSIS and CIS. We can see that the results 

obtained from GSIS agree well with those from CIS. The convergence history of DVM iterations in both GSIS and CIS is 
13
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shown in Fig. 4. It is clear that the CIS is efficient in high Kn cases (Kn > 1), where converged solution can be found within 
20 iterations. However, it becomes very inefficient when Kn < 0.1, for example, it takes 5,000 iterations to produce the 
converged solution. On the contrary, GSIS converges in less than 60 steps for the whole Kn range.

5.3. Couette flow

The Couette flow has the same geometry configuration as the Fourier flow, but the two plates have the same temperature 
of T0 = 1 and different vertical velocities: U y,L = −0.25 and U y,R = 0.25, respectively. The boundary conditions of the VDF 
at xL and xR are

g(�ξ )|xL,ξx>0 = ρL

2π RT0
exp

[
−ξ2

x + (ξy − U y,L)
2 + ξ2

z

2RT0

]
, (65a)

h(�ξ )|xL,ξx>0 = RT0 g(�ξ )|xL,ξx>0, (65b)

g(�ξ )|xR,ξx<0 = ρR

2π RT0
exp

[
−ξ2

x + (ξy − U y,R)2 + ξ2
z

2RT0

]
, (65c)

h(�ξ )|xR,ξx<0 = RT0 g(�ξ )|xR,ξx<0, (65d)

with

ρL = − 4

π
√

2RTL

∫
ξx<0

ξx f d2�ξ, and ρR = 4

π
√

2RTR

∫
ξx>0

ξx f d2�ξ . (66)

Similar to the Fourier flow, we solve the macroscopic synthetic equations in the following simplified procedure. We 
know that Ux = 0, qy = 0, ∂φ/∂ y = 0, where φ can be any flow variable. Thus the synthetic equations can be simplified as 
a system of equations for ρ , T , p, σxx , σxy and qx:

∂ p

∂x
+ ∂σxx

∂x
= 0, (67a)

∂σxy

∂x
= 0, (67b)

∂σxyU y

∂x
+ ∂qx

∂x
= 0, (67c)

p = ρRT , (67d)

σxy = HoTσxy − μ
∂U y

∂x
, (67e)

σxx = HoTσxx , (67f)

qx = HoTqx − κ
∂T

∂x
, (67g)

where the HoTs are calculated explicitly according to Eq. (20) as

HoTσxx = 1

3

∫ (
2g∗C∗,2

x − g∗C∗,2
y − h∗)d2�ξ, (68a)

HoTσxy =
∫

g∗C∗
x C∗

yd2�ξ + μ∗ ∂v∗

∂x
, (68b)

HoTqx =
∫

C∗
x (g∗C∗,2 + h∗)d2�ξ + κ∗ ∂T ∗

∂x
. (68c)

The unknown variables in Eq. (67) can be solved in a sequential manner: σxx from Eq. (67f), σxy , Eq. (67b), p, Eq. (67a), U y , 
Eq. (67e), qx , Eq. (67c), T , Eq. (67g), and ρ , Eq. (67d).

The velocity-space grid, spatial space grid and the reference variables are set the same as the Fourier flow cases. The Kn 
is defined as Kn = √

πμ0C0/(2p0 L0), and we consider the cases of Kn = 0.01, 0.1, 1 and 10. The convergence criterion for 
the DVM iteration is that the volume-weighted relative changes of temperature, density and velocity between two iterations 
must be less than 10−8,

Ek =
√∑

i(ψ
k
i − ψk−1

i )2�xi√∑
i(ψ

k−1
i )2�xi

∣∣∣∣∣∣∣ < 1 × 10−8, for ψ ∈ {ρ, T , v}. (69)
max
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Fig. 5. Velocity (a) and temperature (b) profiles in the nonlinear Couette flow. The solid lines and circles represent the CIS and GSIS results, respectively.

Fig. 6. Convergence history of both GSIS and CIS in the simulation of nonlinear Couette flow.

The converged velocity and temperature profiles predicted by GSIS and CIS are shown in Fig. 5, while the convergence 
history is shown in Fig. 6. It is seen that the GSIS converges in less than 70 steps for all the cases, while the CIS needs 
many more steps when Kn decreases to less than 0.1. For example, when Kn = 0.01, GSIS is faster than CIS by more than 
two orders.

5.4. Lid-driven cavity flow

This problem has been simulated extensively for validating gas kinetic schemes. The flow domain is a square cavity with 
a size of L0 × L0 = 1 × 1. The top boundary (the lid) of the cavity moves horizontally in the x direction with a velocity 
of uw = 0.14828, while the other walls are fixed. All the solid walls are maintained at a uniform reference temperature of 
Tw = 1, where the Maxwellian diffuse boundary condition is applied, see Eq. (65).

The spatial space is discretized with Cartesian structured meshes and the gas kinetic equation is solved by the upwind 
finite difference scheme, while the macroscopic synthetic equations are solved using the implicit finite volume method 
described in Sec. 4.2. The cell centers are the finite difference nodes in the DVM discretization. The finite volume grid line 
positions are distributed according to

xi, yi = 1

2
+ tanh[a(i/N − 0.5)]

2 tanh(a/2)
, i = 0,1, . . . , N, (70)

where N is the mesh size. The parameter a is adjusted such that the height of the first layer of cells adjacent to the wall 
is the set to desired value, i.e., �xmin ≡ x1 = y1. The convergence criterion for the DVM iteration is that the cell-volume 
averaged relative changes of all the conservative variables between two successive steps are less than 1 × 10−8, i.e.,

Ek =
√√√√∑i, j(ψ

k
i, j − ψk−1

i, j )2�i, j∑
(ψk−1)2�i, j

< εout, for ψ in �W . (71)

i, j i, j
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Table 1
Number of DVM steps in CIS and GSIS and the overall CPU time for lid-driven cavity flow at different 
Knudsen numbers. Note that it takes 5 minutes to get the converged solution when the cavity flow is solved 
by the Navier-Stokes equations with no-slip boundary condition at Kn = 0.0002682.

Kn Physical Velocity CIS: DVM CIS: CPU GSIS: DVM GSIS: CPU
grid size grid size steps time steps time

10 64 × 64 48 × 48 24 14 s 24 16 s
1 64 × 64 48 × 48 24 14 s 23 29 s
0.075 64 × 64 28 × 28 226 40 s 52 2.2 min
0.002682 128 × 128 28 × 28 40,917 123 min 234 10.5 min
0.0002682 128 × 128 28 × 28 1,283,068 64.2 h 1410 49 min

The convergence criterion of solving the macroscopic synthetic equations (the inner loop) is defined exactly the same as the 
outer loop, but with the superscript k changed to n, and εout changed to εin. For this flow problem, εout = 1 × 10−8 and 
εin = 1 × 10−6.

We first consider the rarefied gas flows, with Kn = 0.075, 1 and 10. The physical space grid is set as N = 64 and 
�xmin = 5 × 10−3. For Kn = 1 and 10, the velocity-space grid is set according to Eq. (62), with NV = 48. While for the 
case of Kn = 0.075, we use a 28-by-28-point velocity grid with the half-range Gauss-Hermite quadrature. The macroscopic 
synthetic equations are solved in the domain excluding four layers of cells adjacent to the solid walls. Comparisons of 
temperature and heat flux streamlines are shown in Fig. 7, and the velocity profiles across the center lines of the cavity are 
shown in Fig. 8. These figures show that in the rarefied regime, the GSIS and CIS results match well with each other, and 
both schemes capture the anti-Fourier heat transfer phenomenon (from cold to hot) at the top right corner even Kn is as 
small as 0.075.

For flows in the near-continuum regime, we consider the case of Re = 100 and Re = 1000, corresponding to Kn =
2.628 × 10−3 and 2.628 × 10−4, respectively. The spatial grids are set as N = 64, �xmin = 5 × 10−3 when Re = 100 and 
N = 128, �xmin = 2 × 10−3 when Re = 1000. The velocity grids are set the same as the case of Kn = 0.075. Fig. 9 shows 
the velocity streamlines predicted by GSIS. The vortex patterns, including size and vortex center positions, agree with the 
reported results [49]. To get a more quantitative comparison, in Fig. 10 we plot the velocity profiles on the vertical and 
horizontal centerlines of the cavity, predicted by both CIS and GSIS, together with Ghia’s benchmark solution [49]. We can 
see that, when Re = 100, CIS and GSIS predicted almost the same solutions, and both agree well with the benchmark 
solution. When Re = 1000, there is a slight difference between the GSIS and CIS results.

The comparison of the convergence history of the DVM iteration is shown in Fig. 11 for both the rarefied and continuum 
flow cases. The corresponding CPU time and the number of DVM steps in both CIS and GSIS are listed in Table 1. The serial 
Fortran program is compiled using the Intel Fortran compiler (version 19.1.1) with the “-xHost” option, and runs on the 
Intel© Xeon© Gold 5118 CPU@2.3 GHz. We can see that for the cases of Kn = 1 and 10, the convergence history of CIS 
and GSIS is very similar, both converge in after about 23 DVM steps. Due to the additional cost in solving the macroscopic 
synthetic equations, with the same number of DVM steps the overall computing cost of GSIS is higher for these highly 
rarefied cases. However, when Kn ≤ 0.075, GSIS needs significantly fewer DVM steps than CIS, e.g., when Re = 100, GSIS 
achieves convergence after 234 DVM steps, while CIS becomes extremely expensive. For these low Kn cases, because GSIS 
can reduce the number of DVM steps by several orders, the additional cost for solving the macroscopic synthetic equations 
is negligible.

5.5. Supersonic flow past a circular cylinder

The last testing case is the supersonic rarefied gas flow passing a circular cylinder. The 2D flow domain is an annulus 
with the inner circle with radius rin being the cylinder surface, and the outer circle with radius of rout = 11rin being the 
far-field boundary. The free-stream Mach number is Ma∞ . The cylinder surface temperature is set as the same as the 
free-stream temperature Tw = T∞ . To properly compare with the reported results [23,25], the Knudsen number is defined 
as

Kn = (5 − 2ω)(7 − 2ω)μ∞C∞
15

√
π p∞rin

(72)

where μ∞ , C∞ and p∞ are the viscosity, the most probable molecular velocity and the pressure at the free-stream condi-
tion, respectively.

Due to symmetry, only the upper-half domain is computed and the symmetric boundary condition is applied. The phys-
ical grid size is M × N , where M is the number of cells along the upper surface of the cylinder and N is the number of 
cells along the radial direction. The cell height along the radial direction grows with a constant expansion ratio from the 
first layer’s height (�rmin). The cell width along the cylinder surface grows from leading and trailing edges of the cylinder 
toward the upper position with a constant expansion ratio, such that the largest cell width is five times of the smallest one. 
For the cases of Kn = 1 and 0.1, the physical grid is set as N = 50, M = 64 and �rmin = 0.01, while for the case of Kn =
0.01, N = 80, M = 80 and �rmin = 0.001. The discrete velocity set is a uniform Cartesian grid with 902 points in the range 
L. Zhu, X. Pi, W. Su et al. Journal of Computational Physics 430 (2021) 110091
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Fig. 7. Contours of the temperature field (left) and streamlines of the heat flux field (right) for the cavity flow with Kn = 10 (top), 1 (middle) and 0.075 
(bottom). In the temperature contours, the CIS results are shown in colored background with white lines, while the GSIS results are shown as dashed red 
lines. In the streamline plots, the CIS and GIS results are denoted by the blue and red lines, respectively. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)
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Fig. 8. Profiles of the horizontal (left) and vertical (right) velocity components along the vertical/horizontal center lines of the cavity. Along the arrow, the 
Knudsen numbers corresponding to the lines are 0.075, 1 and 10, respectively. The solid green lines are the results extracted from Ref. [23] which are 
computed with the explicit discrete-UGKS. The blue lines and red markers represent the CIS and GSIS results, respectively.

Fig. 9. The streamlines of velocity for the lid-driven cavity flow at Re = 100 (left) and 1000 (right).

Fig. 10. The profiles of normalized horizontal (vertical) velocity components u (v) on the vertical (horizontal) central lines of the cavity. Left: Re = 100; 
Right: Re = 1000.
18
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Fig. 11. Convergence history of the cavity flow at different Knudsen numbers. Solid lines and markers represent results of CIS and GSIS, respectively.

Table 2
Number of DVM steps in CIS and GSIS and the overall CPU time for the supersonic cylinder 
flow.

Kn Physical Velocity CIS: DVM CIS: CPU GSIS: DVM GSIS: CPU
grid size grid size steps time steps time

1 64 × 50 90 × 90 186 12 min 264 27 min
0.1 64 × 50 90 × 90 552 36 min 232 24 min
0.01 80 × 80 90 × 90 4,925 508 min 210 42 min

of [−15, 15]2. The DVM method is implemented using the implicit time-stepping scheme as described in Sec. 4.1. The CFL 
number in the DVM and NS solvers are 1000 and 100, respectively. The convergence criterion of the outer loop and inner 
loop in Eq. (71) are set as εout = 1 × 10−6 and εin = 1 × 10−6.

Fig. 12 presents the temperature and local Mach number contours of the results predicted by GSIS and CIS, which are 
overlapped with the literature results wherever available, in particular the DSMC and discrete-UGKS solutions [23]. We 
can observe good agreement between the CIS and GSIS solutions, and overall good matches with the results reported in 
literature. Fig. 13 shows the pressure (normal stress), shear stress and heat flux along the upper surface of the cylinder. 
Comparisons are made with the results from the literature including Refs. [23] and [25]. Again, it is shown that current 
GSIS results agree well with the reported results. In the bottom of Fig. 13, it is seen that both GSIS and CIS capture the flow 
separation from the surface precisely at the same location around 153◦ .

To assess the efficiency of GSIS, we plot the convergence history of the DVM steps in both GSIS and CIS in Fig. 14. In 
addition, Table 2 lists the number of DVM steps and overall computing time in the same environment as in the lid-driven 
cavity flow. Obviously, for highly rarefied flows, CIS is very efficient: when Kn = 1, the solution converges after 186 steps 
and the total computing time is around 12 minutes. For this case, GSIS needs more DVM steps than the CIS, and the overall 
computing time is about twice of CIS. As Kn decreases to 0.1, GSIS becomes slightly more efficient than CIS. When Kn =
0.01, CIS requires as many as 4925 DVM steps and needs around 8 hours to reach convergence, while GSIS takes only 42 
minutes and converges within 210 DVM steps. We note that for small-Kn cases, the inner loop solving the macroscopic 
synthetic equations also takes much fewer time steps to converge, because in these case the Reynolds numbers are much 
higher, favoring a fast convergence of the NSF solver.

6. Conclusions

In summary, we have extended GSIS to find steady-state solutions of the nonlinear gas kinetic equation, which couples a 
simple iterative scheme to solve the gas kinetic equation with an implicit scheme to solve the macroscopic synthetic equa-
tions. Unlike the pure DVM schemes, GSIS enables the DVM simulation to converge very quickly in the near-continuum flow 
regime, which is realized by solving the macroscopic synthetic equations to the steady state after each DVM iteration. The 
viscous fluxes of the macroscopic synthetic equations explicitly include the NSF constitutive relation, while the higher-order 
terms are calculated directly from the velocity distribution function available after each DVM step. Such a treatment guar-
antees the accuracy of GSIS in both the continuum and rarefied regimes. In addition, the construction of higher-order terms 
is further simplified in this paper, compared with the linear GSIS [28]. Several classical cases have been used to analyze 
accuracy and efficiency of the nonlinear GSIS, based on the Shakhov kinetic model. The numerical results demonstrate that 
our scheme is able to obtain steady-state solutions of the gas kinetic equation in a relatively smaller number of iterations. 
19



Fig. 12. Cylinder flow at Ma∞ = 5 and (top) Kn = 1, (middle) Kn=0.1, (bottom) Kn=0.01: comparison of the non-dimensional temperature (left) and local 
Mach number (right) fields obtained by CIS and GSIS, together with the reference discrete-UGKS and DSMC solutions extracted from Ref. [23]. The GSIS 
results are indicated by the colored background with white solid lines, the CIS solutions are presented by the dashed yellow lines. The discrete-UGKS and 
DSMC solutions are represented by the solid red lines and dashed black lines, respectively.

For high-speed flows, GSIS also shows a significant speed-up in comparison with the conventional iteration scheme for 
low-Kn flows.

Compared to the implicit unified gas kinetic scheme and its improved versions [25,50], GSIS does not rely on the relax-
ation time approximation of the Boltzmann collision operator, thus like the linear GSIS [28], it can be extended to solve the 
full Boltzmann equation. Actually, the simple construction of high-order terms proposed in this work further enhances the 
potential of GSIS to account for multi-species and vibrational non-equilibrium phenomena, which are critical for high-speed 
rarefied gas flows such as the re-entry space engineering. In the future work we will use multi-block or unstructured-mesh 
L. Zhu, X. Pi, W. Su et al. Journal of Computational Physics 430 (2021) 110091
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Fig. 13. Comparison of the surface quantities on the cylinder, when (top) Kn = 1, (middle) Kn=0.1, and (bottom) Kn=0.01. The discrete-UGKS and DSMC 
data are extracted from Ref. [23]. The implicit UGKS data are extracted from Ref. [25]. The X-axis is the angle (◦) from leading edge of the cylinder.

Fig. 14. Convergence history of the DVM time stepping in the supersonic cylinder flow at different Knudsen number. The red, green and blue lines are for 
Kn = 1, 0.1 and 0.01, respectively. The solid and dashed lines represent the CIS and GSIS results, respectively.
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techniques to extend GSIS for more practical three-dimensional flows with irregular geometries. We will also investigate 
the possibility of coupling the new macroscopic synthetic equations with DSMC, i.e. to produce a DSMC-GSIS algorithm to 
remove the restriction on cell size and reduce the computing cost for low-Kn flows.
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