
Phys. Fluids 32, 082005 (2020); https://doi.org/10.1063/5.0018505 32, 082005

© 2020 Author(s).

Thermal transpiration in molecular gas
Cite as: Phys. Fluids 32, 082005 (2020); https://doi.org/10.1063/5.0018505
Submitted: 16 June 2020 . Accepted: 03 August 2020 . Published Online: 20 August 2020

Peng Wang (王朋) , Wei Su (苏微) , and Lei Wu (吴雷) 

https://images.scitation.org/redirect.spark?MID=176720&plid=1167512&setID=405127&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1f3035dd9c646c4b12aea2366796557c421312ce&location=
https://doi.org/10.1063/5.0018505
https://doi.org/10.1063/5.0018505
https://aip.scitation.org/author/Wang%2C+Peng
http://orcid.org/0000-0002-6595-0950
https://aip.scitation.org/author/Su%2C+Wei
http://orcid.org/0000-0002-6791-6369
https://aip.scitation.org/author/Wu%2C+Lei
http://orcid.org/0000-0002-6435-5041
https://doi.org/10.1063/5.0018505
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0018505
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0018505&domain=aip.scitation.org&date_stamp=2020-08-20


Physics of Fluids ARTICLE scitation.org/journal/phf

Thermal transpiration in molecular gas

Cite as: Phys. Fluids 32, 082005 (2020); doi: 10.1063/5.0018505
Submitted: 16 June 2020 • Accepted: 3 August 2020 •
Published Online: 20 August 2020

Peng Wang (王朋),1 Wei Su (苏微),2 and Lei Wu (吴雷)3,a)

AFFILIATIONS
1State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
2James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde,
Glasgow G1 1XJ, United Kingdom

3Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

Note: This paper is part of the Special Topic, Advances in Micro/Nano Fluid Flows: In Memory of Professor Jason Reese.
a)Author to whom correspondence should be addressed: wul@sustech.edu.cn

ABSTRACT
The thermal transpiration of molecular gas is investigated based on the model of Wu et al. [“A kinetic model of the Boltzmann equation
for non-vibrating polyatomic gases,” J. Fluid Mech. 763, 24–50 (2015)], which is solved by a synthetic iterative scheme efficiently and
accurately. A detailed investigation of the thermal slip coefficient, Knudsen layer function, and mass flow rate for molecular gas interact-
ing with the inverse power-law potential is performed. It is found that (i) the thermal slip coefficient and Knudsen layer function increase
with the viscosity index determined by the intermolecular potential. Therefore, at small Knudsen number, gas with a larger viscosity index
has a larger mass flow rate; however, at late transition and free molecular flow regimes, this is reversed. (ii) The thermal slip coefficient
is a linear function of the accommodation coefficient in Maxwell’s diffuse–specular boundary condition, while its variation with the tan-
gential momentum accommodation coefficient is complicated in Cercignani–Lampis’s boundary condition. (iii) The ratio of the thermal
slip coefficients between monatomic and molecular gases is roughly the ratio of their translational Eucken factors, and thus, molecular
gas always has a lower normalized mass flow rate than monatomic gas. (iv) In the transition flow regime, the translational Eucken fac-
tor continues to affect the mass flow rate of thermal transpiration, but in the free molecular flow regime, the mass flow rate converges
to that of monatomic gas. Based on these results, accommodation coefficients were extracted from thermal transpiration experiments
of air and carbon dioxide, which are found to be 0.9 and 0.85, respectively, rather than unity used in the literature. The methodology
and data presented in this paper are useful, e.g., in the pressure correction of capacitance diaphragm gauge when measuring low gas
pressures.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018505., s

I. INTRODUCTION

Thermal transpiration, where the gas moves toward a hot-
ter region even in the absence of a pressure gradient,1,2 is one of
the fundamental problems in rarefied gas dynamics. It has found
applications in many engineering problems, including the Crookes
radiometer3 that can be used in energy harvesting,4–6 the Knud-
sen compressor that pumps gas without any moving mechanical
part,7,8 the capacitance diaphragm gauge where the effects of ther-
mal transpiration should be subtracted for accurate measurement
of low gas pressures,9,10 gas mixture separation,11 and the Leiden-
frost ratchet that rectifies the vapor flow in the boundary layer.12

Thermal transpiration arises when the Knudsen number Kn, defined
as the ratio of mean free path λ of molecular gas to characteristic sys-
tem length H, becomes appreciable in micro-/nano-devices and/or
low-pressure environments.

The Boltzmann equation is adopted to study the rarefied gas
dynamics. However, in engineering applications, huge computa-
tional efforts are required to obtain its numerical solutions, either
deterministically13–15 or stochastically.16,17 Fortunately, when Kn is
small, rarefaction effects only dominate in the Knudsen layer,18

which are reflected in terms of the velocity-slip and temperature-
jump boundary conditions; hence, techniques in the computa-
tional fluid dynamics can be used to describe the rarefied gas
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dynamics.19–21 Based on the kinetic theory, Maxwell proposed an
expression for the slip velocity U at the solid surface,2

U∣
x2=0
= σP

vmμ
p

∂U
∂x2
∣

x2=0
+ σT

μ
ρT

∂T
∂x3
∣

x2=0
, (1)

where x3 and x2 are the Cartesian coordinates in the parallel and
normal directions to the solid surface (see Fig. 1), respectively, while
μ, ρ, T, p, and vm are the shear viscosity, density, temperature, pres-
sure, and most probable speed of the gas, respectively. In Eq. (1),
σP and σT are the viscous slip coefficient (VSC) and thermal slip
coefficient (TSC), respectively, which can be determined from the
linearized Boltzmann equation (LBE)22–24 or from experiments.25–28

With the diffuse-specular boundary condition, Maxwell derived

σP =
2 − αM

αM
,

σT =
3
4

,

(2)

where 0 ≤ αM ≤ 1 is the probability of the diffuse scattering; for con-
venience, it will be called the tangential momentum accommodation
coefficient (TMAC) in the following paper, although in addition to
TMAC, the energy accommodation coefficient is also αM . It is noted
that Eq. (2) is only a rough approximation, as one would imme-
diately ask (i) why is the TSC not a function of TMAC, (ii) how
does the intermolecular potential affect the two slip coefficients in
monatomic gas, and (iii) how does the internal structure of molecu-
lar (i.e., diatomic and nonlinear polyatomic) gases affect the two slip
coefficients?

Extensive studies on the VSC have been carried out based on
the exact or variational solutions of the LBE.22–24,29 It is found that
the VSC is insensitive to the intermolecular potential and internal
structure of molecular gases;30 the latter is understandable because
the internal structure of molecular gas rarely affects the shear viscos-
ity, but the thermal conductivity.31 For the TSC, variational results
of the LBE with Lennard-Jones and n(r)-6 potentials for monatomic
gases showed that the TSC depends on intermolecular potential.29

Later, the same conclusion is obtained by solving the LBE with
Lennard-Jones potentials accurately,32,33 although the TSC is indi-
rectly fitted by expanding the mass flow rate into power series of
the Knudsen number,30 because the steady-state solution of LBE is

FIG. 1. Schematic of the thermal transpiration between two parallel plates, where
the gas moves from the cold region to the hot region, despite the uniform gas
pressure. Inside the Knudsen layer, a considerable deviation of the true velocity
from the slip velocity in the bulk region is noticed; this deviation can be described
by the Knudsen layer function.

hard to find in flows with small Knudsen numbers. For this rea-
son, the thermal transpiration is mostly studied based on simplified
kinetic models.34–36 Since it is recognized that thermal transpiration
is related to the translational thermal conductivity κt rather than
the total thermal conductivity,37,38 Porodnov solved the Bhatnagar-
Gross-Krook (BGK) equation39 and found that the TSC can be
expressed as26

σT =
3

10
ftr(1 + 0.5αM), (3)

where

ftr =
2mκt

3kBμ
(4)

is the translational Eucken factor, with m being the molecular mass
and kB being the Boltzmann constant. For monatomic gas, we have
ftr = 2.5, and Eq. (3) is different to the original one proposed by
Maxwell. For molecular gas especially some polar gases, ftr can be
much smaller than that of monatomic gas;31 therefore, it affects the
thermal transpiration significantly.

It should also be noted that, based on the Hanson and Morse
kinetic model40 that is derived from the Wang-Chang and Uhlen-
beck equation41 for molecular gases, the mass flow rate of thermal
transpiration through channels and tubes was obtained.35,42,43 How-
ever, as summarized by Sharipov,30 no expression other than Eq. (3)
is extracted. That is to say, the role of intermolecular potential is still
not known in molecular gas. Although many other kinetic models
have been proposed for molecular gas,44–49 most of them do not take
into account the velocity-dependent collision frequencies, so they
can be hardly used to study the influence of intermolecular poten-
tials.50 On the other hand, some models do not allow a free variation
of the translational Eucken factor;44,45 this will affect the accuracy
in the extraction of gas–surface interaction parameter from thermal
experiments.27

Therefore, in this paper, we aim to answer how the intermolec-
ular potential, internal structure of gas molecules, and the boundary
condition affect the TSC. We will investigate the thermal transpi-
ration of molecular gas based on the model of Wu et al.,50 with
the advantages that (i) the LBE for monatomic gases is recovered
in the limit of no energy exchange between the translational and
internal modes, and hence, the role of intermolecular potential is
properly modeled; (ii) like the Rykov model,46 the specific proper-
ties of molecular gas (e.g., bulk viscosity, translational Eucken factor,
and internal thermal conductivity) can be freely adjusted, and thus,
the influence of these parameter, if any, can be studied; and (iii) for
low-speed flow, the efficient and accurate numerical scheme can be
used to solve the Wu et al. model,14,15 while the direct simulation
Monte Carlo method cannot always recover the thermal conduc-
tivity of molecular gas51,52 and is time-consuming when the flow
velocity is far below the speed of sound.16,53 We will also investigate
the thermal transpiration of monatomic gas, since unlike VSC, very
limited data of the TSC have been reported particularly for different
intermolecular potentials.

The remainder of this paper is organized as follows: In Sec. II,
a synthetic iterative scheme (SIS) is developed to find the steady-
state solution of the model of Wu et al. efficiently and accurately.
In Sec. III, the SIS is used to investigate the roles of intermolecular
potential and gas-surface boundary condition on the TSC, Knud-
sen layer function (KLF), and mass flow rate of monatomic gas. In
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Sec. IV, the SIS is applied to molecular gas, focusing on the role of
translational Eucken factor. In Sec. V, reasonable accommodation
coefficients were extracted by comparing numerical solutions of the
model of Wu et al. with available experimental data on the thermal
pressure difference (TPD) exponent of air and carbon dioxide. The
conclusions are given in Sec. VI.

II. FORMULATION OF THE PROBLEM
Consider the steady flow of a single-species gas driven by a lin-

ear temperature gradient KT = Hd ln T/dx3 along the x3 direction
(see Fig. 1). The gas is maintained at the same pressure along the
channel, and the solid wall is stationary. The TSC and KLF will be
investigated in the thermal transpiration between two infinite paral-
lel plates located at x2 = 0 and x2 = H, provided that H is much larger
than the mean free path of gas molecules. We will also consider
the gas flow through a circular tube with a radius of H and com-
pare our numerical results with the experimental data on the TPD
exponent.

A. The kinetic model for molecular gases
The dynamics of molecular gas is described by the Wang-

Chang and Uhlenbeck equation,41 where the internal structure of
molecular gases makes the collision operator much more compli-
cated than that of the Boltzmann equation for monatomic gas. Built
upon the Rykov model46 for diatomic gases, Wu et al. developed a
kinetic model to simplify the complicated collision operator for non-
vibrational molecular gases, where the numerical results showed
that the influence of intermolecular potentials can be captured. For
molecular gas where the vibrational modes are excited, the vibra-
tional modes have negligible effects on the translational thermal
conductivity.31 As the thermal transpiration is related to the trans-
lational Eucken factor only,37,38 which we will show in Fig. 8 below,
the use of the model of Wu et al. is justified.

For a molecular gas with three translational and d rotational
degrees of freedom, the dilute gas system is described by the one-
particle velocity distribution function f (t, x, v, I), where t is the time,
x = (x1, x2, x3) is the spatial coordinate, v = (v1, v2, v3) is the trans-
lational velocity of gas molecules, and I is the rotational energy.
It is obvious that the dependence of f on I significantly increases
the computational effort; in order to improve the computational
efficiency, two reduced velocity distribution functions G(t, x, v)
= ∫

∞
0 (t, x, v, I)dI and R(t, x, v) = ∫∞0 (t, x, v, I)I2/ddI are usually

introduced to eliminate the dependence of I. For the sake of conci-
sion, we will not give the general form of the governing equations
for G and R, which can be found in Ref. 50 but only present the
special form for the current problem. That is, when the tempera-
ture gradient KT is sufficiently small, we can linearize the reduced
velocity distribution functions around the global equilibrium state
Feq(v) = π−3/2 exp(−∣v∣2) as follows:

G = Feq + h0,

R =
d
2

Feq + h1.
(5)

Then, introducing h2 = h1 − dh0/2, the gas system is eventually
described by the two perturbed velocity distribution functions h0

and h2, whose dynamics are governed by the following equations:

v1
∂h0

∂x1
+ v2

∂h0

∂x2
=L(Feq, h0) + δrpΔG + S0, (6)

v1
∂h2

∂x1
+ v2

∂h2

∂x2
= δrp(h+

2 − h2) + S2, (7)

where h0 and h2 have been normalized by n0/v3
m and n0kBT0/v3

m,
respectively, with n0 being the number density, T0 being the refer-
ence temperature, and vm =

√
2kBT0/m being the most probable

speed. The spatial coordinates x1 and x2 have been normalized by H.
The two source terms

S0 = −KTv3(∣v∣2 −
5
2
)Feq,

S2 = −
d
2

KTv3Feq

(8)

are present due to the temperature gradient. Note that we have omit-
ted the derivatives of time in Eqs. (6) and (7), since we are only
interested in steady-state flow.

The two inelastic terms ΔG and h+
2 are supposed to describe the

energy exchange between the translational and rotational motions
so that the rotational temperature Tr relaxes toward the overall tem-
perature T as ∂Tr/∂t = n0kBT0(T − Tr)/Zμ(T0), where Z is the rota-
tional collision number. However, in this specific problem, h0 and
h2 are odd functions of v3, so the translational and internal temper-
atures are equal to the overall temperature (the wall temperature in
this case). Therefore, ΔG and h+

2 are greatly simplified to

ΔG =
4(ω0 − 1)

15Z
qt,3v3(∣v∣2 −

5
2
)Feq, (9)

h+
2 = 2qr,3v3Feq[1 − (1 − ω1)/Z](1 − δ), (10)

where δ is the Schmidt number of the gas. The value of Z determines
the bulk viscosity of molecular gas; however, in this problem, the
bulk viscosity is not important since there is no internal energy relax-
ation. Also note that when Z approaches infinity, Eq. (6) is reduced
to the LBE for monatomic gases. The translational and rotational
heat fluxes along the direction of temperature gradient, which have
been normalized by n0kBT0vm, are

qt,3 = ∫ h0(∣v∣2 −
5
2
)v3dv,

qr,3 = ∫ h2v3dv,
(11)

respectively. According to the Chapman and Cowling expansion,54

the two constants ω0 and ω1 are related to the translational (κt)
and rotational (κr) heat conductivities, respectively, which are
given as50

κt =
15kBμ

4m
(1 +

1 − ω0

2Z
)
−1

, (12)

κr =
dkBμ
2δm
[1 +

(1 − δ)(1 − ω1)

Zδ
]

−1

. (13)
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Finally, the rarefaction parameter in Eqs. (6) and (7) is defined as

δrp =
n0kBT0H
μ(T0)vm

, (14)

and the linearized Boltzmann collision operator in Eq. (6) takes the
following form:14,55

L(Feq, h0) =∬ B[Feq(v′)h0(v′∗) + Feq(v′∗)h0(v′)

−Feq(v)h0(v∗) − Feq(v∗)h0(v)]dΩdv∗. (15)

More information about the deflection angle θ, collision kernel B,
and post-collision velocity v′ are presented in Refs. 33 and 56. In this
paper, the inverse power-law potentials with the following modeled
collision kernels are considered:

B =
∣v − v∗∣2(1−ω)

K
sin

1
2−ω θ, (16)

where ω is the viscosity index57 and K is the normalization con-
stant.14,33 The slower the inverse power-law potential decays with
respect to the intermolecular distance, the larger the value of ω. For
instances, hard-sphere (HS) and Maxwellian molecules have ω = 0.5
and 1, respectively. For polar gases dominated by dipole interactions,
we have ω = 1.5. Note that although realistic potential can be used,
the TSC and KLF are determined by the effective viscosity index ω.24

In the following calculations, we set KT = 1 in Eq. (8). The
macroscopic flow velocity that is normalized by the most probable
speed is calculated as U3(x1, x2) = ∫h0v3dv. The KLF, which is the
defect velocity Ud inside the Knudsen layer, is retrieved through the
thermal transpiration along straight planar channel according to the
following equation (see Fig. 1):

Ud(
x2

Kn
) =

1
Kn
[U3(x2 =

1
2
) −U3(x2)], (17)

where the Knudsen number is formally defined as Kn = λ/H
=
√
π/2δrp. Meanwhile, the TSC is calculated as

σT = 2δrpU3(x2 =
1
2
). (18)

Note that δrp should be set large enough to avoid the overlap of the
two Knudsen layers in the vicinity of the plates.

B. Gas kinetic boundary conditions
The gas–surface boundary condition is needed in spatially

inhomogeneous problems. The general form of the boundary con-
dition, which specifies the relation between the velocity distribu-
tion function f of the reflected and incident gas molecules at the
boundary via a non-negative scattering kernel R(v′ → v), is given
as follows:

vn f (v) = ∫
v′n<0
∣v′n∣R(v

′
→ v)f (v′)dv′, vn > 0, (19)

where v′ and v are the velocities of the incident and reflected
molecules, respectively, and vn is the normal component of the
molecular velocity v directed into the gas.

The most popular gas–surface boundary condition is the
Maxwell or diffuse-specular one, with the scattering kernel reading
as

RM(v′ → v) = αM
m2vn

2π(kTw)2 exp(−
m∣v∣2

2kTw
)

+ (1 − αM)δd(v
′
− v + 2nvn), (20)

where δd is the Dirac delta function. The boundary condition
assumes that, after collision with the surface, a molecule is specu-
larly reflected with the probability 1 − αM ; otherwise, it is scattered
diffusely (i.e., reflected toward every direction with equal probability
in a Maxwellian velocity distribution). Purely diffuse reflection takes
place when αM = 1.

In addition to the Maxwell model, the Cercignani–Lampis (CL)
boundary condition has also been widely used.58,59 For simplicity in
this paper, we consider the case where the energy accommodation
coefficient associated with the rotational modes is one so that the
scattering kernel reads

RCL(v′ → v) =
m2vn

2παnαt(2 − αt)(kTw)
2 I0(

√
1 − αnmvnv′n
αnkTw

)

× exp
⎧⎪⎪
⎨
⎪⎪⎩

−
m[v2

n + (1 − αn)v′n]
2

2kTwαn

−
m[vt − (1 − αt)v′t]

2

2kTwαt(2 − αt)

⎫⎪⎪
⎬
⎪⎪⎭

, (21)

where vt is the tangential component of the molecular velocity,
I0(x) = 1

2π ∫
2π
0 exp(x cosϕ)dϕ, 0 ≤ αn ≤ 1 is the energy accommoda-

tion coefficient, and 0 ≤ αt ≤ 2 is the effective TMAC. When αn = αt
= 1 or αn = αt = 0, the fully diffuse or specular boundary conditions
are recovered, respectively.

With these boundary conditions, it can be found that for the
thermal transpirations between two parallel plates and along the
straight long tube, the mass flow rate or the flow velocity U3 that is
mainly concerned to recover the KLF and TSC is only determined by
Eq. (6). In other words, the mass flow rate is determined by the rar-
efaction parameter δrp, the intermolecular potential that is reflected
by the viscosity index ω in Eq. (16), and (ω0 − 1)/Z; the last param-
eter is related to the translational Eucken factor in the following
manner:

ftr =
2 mκt

3kBμ
=

5
2
(1 +

1 − ω0

2Z
)
−1

. (22)

C. The synthetic iteration scheme
The steady-state solution of Eq. (6) is normally found by the

conventional iteration scheme. Given h(k)0 (x1, x2, v) at the kth itera-
tion step, its value at the next iteration step is calculated by solving
the following equation:50

νh(k+1)
0 + v1

∂h(k+1)
0

∂x1
+ v2

∂h(k+1)
0

∂x2

=L(Feq, h(k)0 ) + δrpΔ(k)G + νh(k)0 + S0, (23)
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where the constant ν is roughly equal to δrp(Z + 1)/Z to make the
iteration stable, the spatial derivative is approximated by a second-
order upwind finite difference, and the linearized Boltzmann colli-
sion operator in Eq. (15) is calculated by the fast spectral method.33

The process is repeated until relative differences between succes-
sive estimates of macroscopic quantities are less than a convergence
criterion.

The conventional iteration scheme is efficient for highly rar-
efied gas flows, where converged solutions can be found after several
iterations. However, the number of iterations increases significantly
with δrp, especially when the gas flow is in the near-continuum
regime. To expedite the convergence, synthetic equations for macro-
scopic quantities should be developed and solved together with the
kinetic equation.60 Since the flow velocity U3 is the primary con-
cern here, we consider the following synthetic equation to boost the
convergence significantly:61

∂2U3

∂x2
1

+
∂2U3

∂x2
2
= −

1
4
(
∂2F2,0,1

∂x2
1

+ 2
∂2F1,1,1

∂x1∂x2
+
∂2F0,2,1

∂x2
2
)

+ 2
∂

∂x1
∫ v1v3L

′dv + 2
∂

∂x2
∫ v2v3L

′dv, (24)

where L ′
= L + δrpΔG + δrph0 and Fl1 ,l2 ,l3(x1, x2) = ∫h0Hl1(v1)

Hl2(v2)Hl3(v3)dv, with Hn(v) being the nth order physicists’ Her-
mite polynomial. Based on the synthetic equation (24), we propose
the following synthetic iteration scheme (SIS):

● When h(k)0 , U(k)3 , and q(k)t,3 are known at the kth iteration
step, we calculate ∫ v1v3L

′dv and ∫ v2v3L
′dv in Eq. (24).

We also calculate the distribution function h(k+1/2)
0 at the

intermediate step by solving the following equation:

νh(k+1/2)
0 + v1

∂h0
(k+1/2)

∂x1
+ v2

∂h0
(k+1/2)

∂x2

=L(Feq, h(k)0 ) + δrpΔ(k)G + νh(k)0 + S0. (25)

● From h(k+1/2)
0 , we calculate the flow velocity U(k+1/2)

3 and
F2,0,1, F1,1,1, and F0,2,1. Near the solid surface, we let U(k+1)

3

= U(k+1/2)
3 , while the flow velocity U(k+1)

3 in the bulk region
is obtained by solving the diffusion-type Eq. (24).

● A correction of the velocity distribution function is intro-
duced in accordance with the changed flow velocity,

h(k+1)
0 = h(k+1/2)

0 + 2(U(k+1)
3 −U(k+1/2)

3 )v3Feq. (26)

● The above steps are repeated until convergence.

D. Numerical efficiency
Note that when Z → ∞, there is no translational–rotational

energy transfer so that Eq. (6) degenerates to the LBE for monatomic
gases, for which the accuracy and efficiency of SIS have been demon-
strated.61 Here, we consider the performance of SIS for the thermal
transpiration of a diatomic gas between two infinite parallel plates
located at x2 = 0 and x2 = 1, respectively.

To solve Eq. (6), v1 and v3 are discretized by 32 × 32 uniform
grids in the range of [−6, 6], while v2 is discretized non-uniformly by

v2 = 6
(−Nv + 1,−Nv + 3, . . . , Nv − 1)ı

(Nv − 1)ı
, (27)

with most of the discrete velocities located near v2 ∼ 0 to capture the
discontinuity in the velocity distribution function; we take Nv = 128
and ı = 5. In order to capture the Knudsen layer near the solid sur-
face, the spatial domain 0 ≤ x2 ≤ 1/2 is divided into Ns non-uniform
sections, with most of the discrete points placed in the vicinity of
solid surface,

x2 = (10 − 15s + 6s2
)s3, s =

(0, 1, . . . , Ns)

2Ns
. (28)

Due to symmetry h0(x2, v1, v2, v3) = h0(1 − x2, v1, −v2, v3), the
other half spatial domain is not considered. In this test, we choose
Ns = 100. In the fast spectral approximation of the linearized Boltz-
mann collision operator (15), the integral with respect to the solid

FIG. 2. Velocity profiles at different iteration steps obtained from the conventional
iteration scheme (a) and SIS (b) when δrp = 50. The HS diatomic molecules
with d = 2, the Schmidt number δ = 1/1.33, and the rotational collision number
Z = 2 are considered. The initial condition is h0(x2, v) = 0. The iteration is ter-
minated when the maximum relative difference in the flow velocity between two
consecutive iterations is less than 10−6.
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angle Ω is calculated by the Gauss–Legendre quadrature with M = 8
[see Eq. (39) in Ref. 56].

Figure 2 compares the convergence history of SIS to that of
the conventional iteration scheme when δrp = 50. Starting from the
zero initial condition, the perturbation induced by the temperature
gradient at the solid surface slowly penetrates the bulk regime in
the conventional iteration scheme such that the converged solution
is reached after 7732 iteration steps. This situation is completely
changed in SIS, where the flow velocity is corrected according to
the synthetic equation (24). Such a macroscopic governing equation
allows the efficient exchange of information in the whole computa-
tional domain, and therefore, fast convergence is realized after only
44 iteration steps. The gain of using SIS becomes larger as δrp fur-
ther increases. Since the computational effort to solve the synthetic
equation is negligible compared to that of the kinetic equation [i.e.,
for the LBE, the computational cost is proportional to NsN3

v log(Nv),
while for the synthetic equation, it is proportional to N2

s ], the com-
putational time saving in the SIS is proportional to the number of
iterations it saves. At δrp = 200, the SIS is about 500 times more
efficient than the conventional iteration scheme. Such an efficient
scheme facilitates the calculation of TSC and KLF over a wide range
of parameters.

Note that the SIS is particularly devised for the linearized ther-
mal transpiration to achieve fast convergence to the steady-state
solution in the near-continuum regime, where the direction of the
flow velocity U3 is perpendicular to the computational domain
x1 − x2 and only one synthetic diffusion-type equation for U3
is needed. We have also developed the general synthetic iterative
scheme that can boost the convergence of general rarefied gas flow
in all the flow regimes,15,62 and the method is ready to be extended
to general molecular gas flows.

III. NUMERICAL RESULTS OF MONATOMIC GASES
We first consider the thermal transpiration of monatomic gas

between two parallel plates. Since some LBE solutions are available
in the literature for HS molecules,23,30 the accuracy of SIS and the
fast spectral method for the Boltzmann collision operator (15) can
be further validated.

In our simulations, the rarefaction parameter δrp is set as 100
so that the wall distance is about 100 times larger than the molec-
ular mean free path. Thus, the interference between two Knudsen
layers near the plates is avoided. To solve Eq. (6), the discretization
of molecular velocity space is the same as that used in Sec. II D. In
order to capture the sharp variation of the velocity profile inside the
Knudsen layer, we choose Ns = 500 for the spatial discretization in
Eq. (28). All these measures enable our results to hold an accuracy
to the sixth decimals.24

A. The thermal slip coefficient
Unlike the VSC, very little data of the TSC have been obtained

from the LBE, particularly the TSCs for different intermolecular
potentials. Here, we close this gap by solving the LBE via the SIS
for different intermolecular potentials and gas–surface interactions.

We first solve the LBE for HS molecules with the diffuse–
specular boundary condition and compare the TSC with those

obtained by Wakabayashi et al.63 and Siewert.64 We find that the
three groups of data agree well with each other, and especially, the
relative difference between our results and those of Siewert64 is less
than 10−3; this confirms the accuracy of our method.

Figure 3 shows the variation of TSC with respect to the TMAC
αM for different types of intermolecular potential. When αM is fixed,
it is seen in most cases that the TSC increases with the viscosity
index, except that this trend is reversed when αM approaches zero.
When the intermolecular potential is fixed, we find that the data
obtained from the LBE can be approximately fitted by linear func-
tions of αM , with the relative discrepancy between fitting results and
numerical data being less than 1.5%, and the slope of fitting increases
with the viscosity index.

Table I and Fig. 4 summarize the TSC computed from the
LBE for HS, Maxwellian, and variable hard sphere (VHS) (ω = 1.5)
molecules with the CL boundary condition. When αt and αn are
fixed, the TSC increases with the viscosity index. For example, when
the HS and VHS with ω = 1.5 are considered, the maximum rel-
ative difference reaches 58% when αt = 2 and αn = 1. When the
viscosity index is fixed, however, the variation of TSC with respect to
the effective TMAC αt and energy accommodation coefficient αn is
complicated. We first consider the case when the values of αt and the
intermolecular potential are fixed. From Table I, we see that, when
αt < 1, the TSC increases with αn where the maximum increment
is less than 20% when αn varies from 0.25 to 1. Furthermore, this
kind of variation reduces when αt approaches 1; when αt = 1, the CL
boundary condition is reduced to the fully diffuse one in this prob-
lem, and the TSC does not vary with αn. When αt > 1, the variation
of TSC on αn reverses when compared to that of αt < 1. We then fix
the value of αn and the intermolecular potential to see how αt affects
the TSC. Unlike the diffuse–specular boundary condition where the
TSC is nearly a linear function of TMAC, here, the change in the TSC
with respect to αt is nonlinear. Also, it is observed that the smaller
the value of αn, the stronger the variation in the TSC with αt . For
instance, when ω = 0.5 and αn = 0.75, the TSC first decreases to a
minimum value at αt ≈ 0.5 and then increases to a maximum value

FIG. 3. Symbols: TSCs obtained from the LBE for HS, Maxwellian, and vari-
able hard sphere (VHS, ω = 1.5) molecules when the diffuse–specular boundary
condition is used. Lines: linear fittings of TSCs with respect to the TMAC.

Phys. Fluids 32, 082005 (2020); doi: 10.1063/5.0018505 32, 082005-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

TABLE I. TSCs obtained from the LBE for HS, Maxwellian, and VHS (ω = 1.5)
molecules under the CL boundary condition with different values of the effective
TMAC αt and energy accommodation coefficient αn.

αt ω αn = 0.25 αn = 0.5 αn = 0.75 αn = 1

0.25
0.5 0.878 961 0.939 289 0.997 097 1.052 749
1.0 0.957 507 1.031 589 1.103 622 1.173 821
1.5 1.073 727 1.166 016 1.256 071 1.343 934

0.5
0.5 0.915 032 0.953 837 0.991 52 1.028 174
1.0 1.038 391 1.085 497 1.132 079 1.178 087
1.5 1.207 714 1.265 554 1.323 069 1.380 077

0.75
0.5 0.963 946 0.982 787 1.001 310 1.019 504
1.0 1.111 326 1.134 018 1.156 801 1.179 587
1.5 1.309 165 1.336 765 1.364 675 1.392 753

1.0
0.5 1.018 280 1.018 280 1.018 280 1.018 280
1.0 1.179 794 1.179 794 1.179 794 1.179 794
1.5 1.394 533 1.394 533 1.394 533 1.394 533

1.25
0.5 1.070 999 1.053 104 1.035 091 1.017 060
1.0 1.245 767 1.224 484 1.202 513 1.180 003
1.5 1.476 314 1.450 674 1.423 957 1.396 309

1.5
0.5 1.114 835 1.079 992 1.044 506 1.008 646
1.0 1.310 156 1.269 058 1.226 052 1.181 462
1.5 1.564 814 1.515 439 1.463 286 1.408 579

1.75
0.5 1.142 984 1.092 304 1.040 058 0.986 740
1.0 1.372 910 1.313 785 1.251 073 1.185 256
1.5 1.667 706 1.596 793 1.520 959 1.440 373

2
0.5 1.150 836 1.085 729 1.017 732 0.947 616
1.0 1.433 179 1.358 215 1.277 626 1.191 998
1.5 1.788 740 1.698 623 1.601 268 1.496 587

at αt ≈ 1.5. This is not observed in the work65 where the Shakhov
gas kinetic model,66 which is a simplified version of the Boltzmann
equation, is employed, and the TSC always increases with αt when
αn is fixed.

B. The Knudsen layer function
The influence of intermolecular potential on the KLF has been

rarely studied, even for monatomic gases, due to the complexity of
the Boltzmann collision operator and the lack of efficient numerical
methods to simulate the near-continuum flow. However, as will be
shown in Sec. III C, the KLF is important as it is closely related to
the second-order correction (in terms of the Knudsen number) to
the mass flow rate. Fortunately, these computational difficulties can
be tackled by the fast spectral method33 and the SIS in Sec. II C.

Figure 5 shows the KLF obtained from the LBE for HS,
Maxwellian, and VHS (ω = 1.5) molecules when the diffuse bound-
ary condition is applied. Obviously, the KLF is strongly affected by
the intermolecular potential, i.e., its value increases with the viscos-
ity index ω. For example, the value of the KLF at the solid surface for
VHS molecules with ω = 1.5 is larger than that of the HS molecules
by approximately 60%.

FIG. 4. TSCs obtained from LBE for (a) HS, (b) Maxwellian, and (c) VHS (ω = 1.5)
molecules when the CL boundary condition is used.

Figure 6(a) further depicts the KLF when the specular–diffuse
boundary condition is used from the case of αM = 0.2 where the spec-
ular reflection is strong. It is noticed that the KLF decreases with
the TMAC; this is in sharp contrast to the KLF in Kramer’s prob-
lem where its value increases when the TMAC decreases.24 However,
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FIG. 5. KLFs obtained from the LBE for HS, Maxwellian, and VHS (ω = 1.5)
molecules when the diffuse boundary condition is applied.

both the thermal transpiration and Couette flow possess the singu-
larity of the velocity gradient at the planar surface. That is, dUd/dx2
varies as x2 ln x2 in the vicinity of the wall, and such a gradient
divergence is general in rarefied gas dynamics.67,68 This conclusion
holds also in the Couette flow described by the BGK kinetic model,69

where the asymptotic analysis demonstrates that the KLF near the
boundary can be described by the following power series:

Ud(x2)

Ud(0)
=

2

∑
n=0

2

∑
m=0

cn,mxn
2(x2 ln x2)

m. (29)

Interestingly, through numerical simulation and fitting, we find
that the KLF in thermal transpiration can also be perfectly fitted
by the same function, where the fitting coefficients are listed in
Table II.

Under the diffuse–specular boundary condition, the similarity
of KLF is found in Fig. 6(b); that is, when the KLFs are rescaled by
their values on the solid surface, they almost overlap with each other.
As shown in the inset, the maximum relative difference among all
the TMACs is less than 4%. Thus, the KLF for the diffuse–specular
boundary condition holds a good similarity at different values of
TMAC. This happens not only for HS molecules but also for other
intermolecular potentials (not shown). Furthermore, we find that
the value of KLF on the solid surface x2 = 0 can be fitted by using
an exponential function of αM ,

Ud(0) = c1[1 − exp(−c2αM)], (30)

where the fitting coefficients c1 and c2 are shown in Table II.
The KLFs are also obtained from the LBE with the CL bound-

ary condition. When αt and αn are fixed, the KLF increases with the
viscosity index. However, unlike the diffuse–specular boundary con-
dition, the KLF only exhibits weak similarities when either αt or αn
is fixed (not shown here).

C. Mass flow rate: The second-order contribution
from KLF

It is very hard to measure the TSC and KLF directly; instead,
the mass flow rate and TPD exponent are measured. Since the TPD

FIG. 6. (a) KLFs for HS molecules with the diffuse–specular boundary condi-
tion. Along the arrow, the TMAC is αM = 1.0, 0.8, 0.6, 0.4, and 0.2, respectively.
Solid lines—LBE results and dots—fitting results by Eq. (29). (b) The rescaled
KLF Ud (x2)/Ud (0) when the HS molecules and diffuse–specular boundary condi-
tion are used. For clarity, results at other values of αM are not shown. Inset: the
relative difference of the rescaled KLF for various αM when compared to that of
αM = 0.5.

exponent is strongly related to the mass flow rate, here, we quantify
the influence of intermolecular potential and gas–surface boundary
condition on the mass flow rate in the near-continuum and early
transition flow regimes.

When δrp is large such that the two Knudsen layers do not over-
lap, from Eqs. (17) and (18), we find that the normalized mass flow
rate Q can be calculated exactly as

Q =
σT

2δrp
−

π
4δ2

rp
Qd, (31)

where

Qd = ∫

∞

0
Ud(x2)dx2 (32)
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TABLE II. Fitting coefficients of the rescaled KLF (29) and Ud (0) in Eq. (30) for inverse power-law potentials with different values of viscosity index ω when the diffuse boundary
condition is used. Note that the coefficient c0,0 is always 1 and the area under the KLF is Qd = ∫∞0 Ud(x2)dx2.

ω c0,1 −c0,2 c1,0 c1,1 −c1,2 −c2,0 c2,1 100c2,2 c1 c2 Qd/Ud(0)

0.5 0.7902 0.1898 0.2116 0.4360 0.0337 0.9019 0.090 16 0.1226 1.364 0.3422 1.9164
0.75 0.9344 0.3722 0.7415 0.6773 0.0864 1.4200 0.2145 0.3768 1.365 0.4004 2.0306
1.0 1.1070 0.5903 1.3790 0.9858 0.1394 2.0450 0.3499 0.5672 1.401 0.4520 2.1724
1.25 1.3910 1.0960 2.5070 1.3990 0.3177 3.1590 0.7581 1.4590 1.468 0.4964 2.3465
1.5 1.7550 1.8140 4.0150 1.9330 0.5663 4.6510 1.3420 2.5580 1.562 0.5360 2.5800

is the mass flow rate correction due to defect velocity, whose val-
ues for typical values of viscosity index are listed in Table III
when the CL boundary condition is used. When the diffuse–
specular boundary condition is used, Qd can be recovered by
using the data in the last three columns in Table II and Eq. (30).
It is seen from Eq. (31) that the KLF provides a correction
of the mass flow rate up to the second-order of the Knudsen
number.

The comparison of the mass flow rate computed from the LBE
and Eq. (31) for HS and Maxwellian molecules is shown in Fig. 7.

TABLE III. The area of the Knudsen layer function Qd for various intermolecular
potentials when the CL boundary condition is used. Results of αt = 1 are not shown as
Qd are the same as those from the diffuse boundary conditions in Table II, irrespective
of the value of αn.

αt ω αn = 0.25 αn = 0.5 αn = 0.75 αn = 1

0.25
0.5 0.3730 0.4926 0.6081 0.7201
1.0 0.5648 0.7140 0.8580 0.9973
1.5 0.8827 1.0901 1.2869 1.4729

0.5
0.5 0.5219 0.5987 0.6738 0.7472
1.0 0.7967 0.8922 0.9855 1.0767
1.5 1.2432 1.3741 1.4995 1.6192

0.75
0.5 0.6462 0.6836 0.7204 0.7568
1.0 0.9675 1.0138 1.0595 1.1047
1.5 1.4883 1.5511 1.6119 1.6705

1.25
0.5 0.8672 0.8314 0.7955 0.7595
1.0 1.2454 1.2014 1.1571 1.1125
1.5 1.8609 1.8013 1.7427 1.6849

1.5
0.5 0.9813 0.9114 0.8405 0.7688
1.0 1.4008 1.3149 1.2280 1.1396
1.5 2.0828 1.9655 1.8497 1.7345

1.75
0.5 1.1063 1.0041 0.8997 0.7930
1.0 1.5928 1.4678 1.3405 1.2100
1.5 2.3807 2.2069 2.0352 1.8631

2
0.5 1.2439 1.1121 0.9762 0.8361
1.0 1.8312 1.6699 1.5052 1.3351
1.5 2.7784 2.5475 2.3196 2.0905

Note that the mass flow rate Q1 = σT/2δrp obtained from the ana-
lytical solution with the first-order thermal slip boundary condi-
tion is also plotted in the figure. It is clear that the mass flow rate
computed from Q1 is only in good agreement with the LBE result
at a large value of δrp ≥ 100, while that from Eq. (31) agrees well
with the LBE results of Q in the interval of δrp ≥ 5. For example,
in the case of δrp = 5, when compared with results of LBE for HS
molecules, the relative error in the mass flow rate for Eq. (31) is
smaller than 5%, while it is larger than 40% for Q1. The reason
that Eq. (31) does not work well when δrp < 5 is that the KLFs at
two solid surfaces start to overlap and higher-order corrections are
needed.

Although the TSC increases with the viscosity index when other
parameters are fixed, the KLF and hence Qd also increase with the
viscosity index. Therefore, from (31), it may concluded that at large
values of the Knudsen number, gas with a smaller value of viscosity
index may have a larger mass flow rate. This is observed in Fig. 10
below when Kn > 0.6.

FIG. 7. The normalized mass flow rate Q vs 1/δrp when the diffuse boundary con-
dition is used. Squares, dashed-dotted line, and dot line represent the results
of HS molecules calculated from the LBE [Eq. (31)] and the analytical solution
with the first-order slip boundary condition (i.e., Q1 = σT /2δrp), respectively. Tri-
angles, solid line, and dashed line are the corresponding results for Maxwellian
molecules.
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FIG. 8. TSCs vs the translational Eucken factor f tr for molecular gas when the
diffuse boundary condition is applied. Solid diamonds—HS molecules, δ−1 = 1.2,
d = 2, hollow squares—HS molecules, δ−1 = 1.2, d = 3, solid circles—Maxwellian
molecules, δ−1 = 1.55, d = 2, hollow triangles—Maxwellian molecules, δ−1 = 1.55,
d = 3, hollow circles—HS molecules, δ−1 = 2, d = 2, hollow hexagrams—
HS molecules, δ−1 = 2, d = 3, solid pentagrams—HS molecules, δ−1 = 1.33,
d = 2, and solid triangles—δ−1 = 1.33, d = 3. Solid lines are the linear fitting
solutions.

IV. NUMERICAL RESULTS OF MOLECULAR GASES
So far, no work has been devoted to finding the TSC and KLF

of molecular gases based on the Boltzmann equation,30 although
they can be roughly extracted from the numerical data given by
Loyalka et al.42 and Lo and Loyalka,43 where the thermal transpi-
ration of molecular gases along planar channels and circular tubes
was calculated based on the model of Hanson and Morse kinetic.40

However, this model is proposed only for Maxwellian molecules
(ω = 1), so the influence of intermolecular potential cannot be cap-
tured. In the following, we report the details on the TSC and KLF
obtained from the model of Wu et al.50 Discretizations of spa-
tial space and molecular velocity space are the same as those in
Sec. III.

A. The thermal slip coefficient
We first consider the diffuse boundary condition and solve the

model of Wu et al. for diatomic (d = 2) and nonlinear polyatomic
(d = 3) gases. Although in the last paragraph of Sec. II, we have stated

TABLE IV. When the diffuse–specular boundary condition is applied, the TSC of
molecular gases can be fitted according to Eq. (33), where the fitting coefficients
depend on the intermolecular potential.

ω C1 C2

0.5 0.095 0.310
0.75 0.125 0.309
1.0 0.165 0.305
1.25 0.202 0.304

that the thermal transpiration along straight planar channel/tube is
determined by the intermolecular potential (viscosity index), the rar-
efaction parameter (or Knudsen number), and translational Eucken
factors, here, we solve the kinetic equations (6) and (7) with differ-
ent combinations of the Schmidt number δ, rotational number Z, ω0,
andω1 to see their influences. From Fig. 8, it is found that, for HS and
Maxwell molecules with diffuse boundary condition, all the TSCs
fall in a straight lines when plotted against the translational Eucken
number ftr , which indicates that the TSC is indeed determined by ω
and ftr .

We further repeat the numerical simulations using different
values of TMAC αM and continue to find that σT is a linear func-
tion of ftr when αM and intermolecular potential are fixed. From a
practical perspective, a more accurate relationship among σT , αM ,

FIG. 9. The rescaled KLF Ud (x2)/Ud (0) obtained from the model of Wu et al.50

for the HS molecules subject to the diffuse–specular boundary condition. (a) The
diffuse–specular boundary condition at different αM is applied with f tr = 2.37. Inset:
the relative difference of the rescaled KLF for various αM when compared to that
of αM = 0.5. (b) The fully diffuse boundary condition is applied with different f tr .
Inset: the relative difference of the rescaled KLF for various f tr when compared to
that of f tr = 1.85.
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and ftr is essentially desired. In fact, it is ready to obtain such expres-
sions for molecular gases by fitting the numerical data from the LBE
solutions of monatomic gas as

σT = ftr(C1αM + C2), (33)

where the fitting coefficients C1 and C2 at various intermolecular
potentials are listed in Table IV. We notice that the relative error
between the fitting and numerical solutions of the model of Wu et al.
is within 2% when 0.2 ≤ αM ≤ 1 and 0.3 ≤ ftr ≤ 2.5. For HS molecules,
the values of σT predicted by Eq. (3) only agree well with our simula-
tion results when the surface is in nearly full accommodation, while
the disagreement between them increases linearly with the reduc-
tion of TMAC, varying from about 2% for αM = 1 to approximate
13% for αM = 0.1. However, for Maxwellian molecules, the relative
differences in σT are larger than 15%.

For the CL boundary condition, when αt does not deviate too
much from 1, when |αt − 1| < 0.3, the TSC σT(αn, αt) can be
expressed as

σT(αn,αt) =
2
5

ftrσm
T (αn,αt), (34)

where σm
T (αn,αt) is the TSC for monatomic gas (see typical val-

ues in Table I). The relative error between the model of Wu et al.
and Eq. (34) increases when αt further deviates away from one
and ftr deviates away from 2.5, e.g., to 7% when αt = 0.2 and
ftr = 0.5.

B. The Knudsen layer function
Like the monatomic gas, the KLF of molecular gases holds sim-

ilarity at different TMACs when the diffuse-specular boundary con-
dition is applied; this is demonstrated in Fig. 9(a) where the rescaled
KLFs and their relative difference are presented. It is clearly seen
that the rescaled KFLs for αM = 0.1, 0.5, and 0.9 almost overlap with
each other, and their maximum derivation from that of αM = 0.5

is within 3%. Additionally, the rescaled KLF is found to be well fit-
ted by Eq. (29), with the fitting coefficients shown in Table V. The
mass flow rate up to the early transition flow regime is also given
by Eq. (31), where typical values of Qd are given in the last three
columns of Table V.

Interestingly, although the TSC is proportional to the trans-
lational Eucken factor ftr , the rescaled KLF does not preserve the
similarity with respect to ftr . As presented in Fig. 9(b), the rescaled
KLF profiles for ftr = 1.2, 1.85, and 2.41 have large discrepancies.
Therefore, we summarize the fitting coefficients of the rescaled KLF
(29) in Table V for typical values of the viscosity index when ftr = 1.8,
2.0, and 2.4; results for other parameters may be obtained through
interpolation. For the CL boundary condition, the KLF does not
hold the similarity at various TMACs and ftr , the same as that for
monatomic gases. According to Eq. (31), the break of the similarity
implies that at higher Knudsen number, the mass flow rate will be
different.

C. The influence of ftr at large Knudsen numbers
From the above discussion, we see that the TSC of molecu-

lar gas is smaller than that of monatomic gas, especially for some
polar gases where the translational Eucken factors are much smaller
than 2.5, e.g., water vapor, ammonia and methanol have ftr = 1.8,
1.3, and 0.4, respectively.31 On the other hand, in the free molec-
ular flow regime, the influence of ftr on the mass flow rate will be
absent due to the vanishing of collision in molecular gases. Now, we
investigate the influence of ftr in the intermediate transition regime.
From Figs. 10(a) and 10(b), we see that the difference in mass flow
rate between monatomic and molecular gases first increases with
the Knudsen number, and then, it decreases when Kn increases.
However, from Fig. 10(c), we see that the mass flow rate of molec-
ular gas normalized by that of monatomic gas always decreases
with the Knudsen number. These results are useful in the calibra-
tion of the capacitance diaphragm gauge when measuring low gas
pressures.9,10

TABLE V. Fitting coefficients of the rescaled KLF (29) and Ud (0) in Eq. (30) for inverse power-law potentials with different values of viscosity index ω, when the diffuse boundary
condition is used. Note that the coefficient c0,0 is always 1 and the area under the KLF is Qd = ∫∞0 Ud(x2)dx2.

ω ftr c0,1 −c0,2 c1,0 c1,1 −c1,2 −c2,0 c2,1 100c2,2 c1 c2 Qd/Ud(0)

0.5
1.8 0.9012 0.1345 0.1832 0.4445 0.0117 0.9154 0.040 59 0.0108 1.535 0.1908 1.6290
2.0 0.8505 0.1368 0.1519 0.4303 0.0119 0.8707 0.041 73 0.0102 1.375 0.2485 1.7018
2.4 0.7697 0.1367 0.1071 0.4090 0.0114 0.8012 0.041 02 0.0087 1.354 0.3260 1.8408

0.75
1.8 1.0140 0.2394 0.6123 0.6975 0.0216 1.3300 0.075 34 0.0195 1.346 0.2579 1.7783
2.0 0.9602 0.2340 0.5597 0.6703 0.0208 1.2640 0.073 18 0.0178 1.324 0.3038 1.8042
2.4 0.8741 0.2226 0.4807 0.6280 0.0190 1.1620 0.067 99 0.0150 1.340 0.3867 1.9412

1.0
1.8 1.1600 0.3745 1.1480 1.0160 0.0344 1.8510 0.120 70 0.0294 1.285 0.3162 1.8511
2.0 1.1020 0.3619 1.0730 0.9738 0.0329 1.7640 0.116 00 0.0274 1.301 0.3603 1.9232
2.4 1.0050 0.3333 0.9438 0.9018 0.0287 1.6120 0.103 20 0.0220 1.366 0.4402 2.0617

1.25
1.8 1.3340 0.5374 1.7890 1.4000 0.0489 2.4760 0.173 50 0.0386 1.280 0.3678 1.9993
2.0 1.2670 0.5095 1.6710 1.3330 0.0452 2.3460 0.161 80 0.0344 1.322 0.4106 2.0733
2.4 1.1580 0.4653 1.4900 1.2290 0.0396 2.1430 0.143 70 0.0284 1.422 0.4882 2.2156
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FIG. 10. The mass flow rate Q as a function of Knudsen number through a pla-
nar channel (a) and tube (b). Solid lines: HS gas. Dashed lines: Maxwellian gas.
The translational Eucken factors corresponding to lines, circles, and triangles are
f tr = 2.5, 1.5, and 0.5. (c) The mass flow rate as compared to that of monatomic
gas Qref when the HS gas model is used. The results of Maxwell gases almost
overlap with those of HS gases.

V. COMPARISON WITH EXPERIMENTS
The experimental data on thermal transpiration of air and car-

bon dioxide in a circular tube are now examined by the LBE calcula-
tions. From the discussions in previous sections, we know that these
data depend on the values of ftr , ω, and TMAC. The same prob-
lem has been investigated by Loyalka et al.42 based on the model
of Hanson and Morse 40 that is derived from the Wang-Chang and
Uhlenbeck equation41 for Maxwellian molecules, but with the dif-
fuse boundary condition only. The methodology we will adopt has
two major advantages. First, in the model of Wu et al.50 for molec-
ular gases, the viscosity index can be properly chosen to reflect
the intermolecular potential for each gas, which is not accessible
in previous molecular gas models. Second, ftr is extracted from the
experiments of Rayleigh–Brillouin scattering, where the gas–surface
interaction is absent so that it is obtained accurately.52 Therefore,
in the comparison between our LBE and experiential results, the
gas–surface boundary condition in thermal transpiration can be
extracted with good accuracy.

A. The TPD exponent
In the experiment of thermal transpiration, usually, the TPD

exponent γ is measured. When the temperature ratio of two gas
reservoirs connected by a long circular tube is small, the TPD
exponent can be calculated as

γ = −
QT

QP
, (35)

where QT and QP are the mass flow rates along the tube in thermal
transpiration and Poiseuille flows, respectively.

In the slip regime, with the aid of the first-order slip boundary
condition, the dimensionless mass flow rate of the Poiseuille flow QP
in a circular tube is70

QP =
δrp

8
+
σP

2
, (36)

where the VSC is set to σP = 1, 1.2, and 1.46 for the cases of αM = 1,
0.9, and 0.8, respectively, as the intermolecular potential has negli-
gible effect on these values.24 Note that Eq. (36) is accurate when
δ > 10. With Eq. (31), the analytical solution of the TPD exponent in
the slip regime can be written as

γ =
4σTδrp − 2πQd

δ2
rp(δrp + 4σP)

. (37)

In our LBE simulations, the viscosity index ω for each gas is set
according to the gaseous property.16 With the values of Qd, σT , and
σP at a specific αM obtained from previous sections, the analytical
solution (37) for the TPD exponent can be determined, which will
be used to extract the TMAC by comparing with the experimental
data when δrp > 3.5. Then, we solve the model of Wu et al. toward
smaller values of δrp < 3.5 to see whether our results still agree with
experimental data or not.

B. Air
We first compare the calculated TPD exponent of thermal tran-

spiration for air with the experimental data by Arney and Bailey71

in Fig. 11. Since air is mainly the mixture of nitrogen and oxygen,
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FIG. 11. TPD exponent vs the rarefaction parameter δrp for air flows along a circu-
lar tube. Symbols: experimental data extracted from Ref. 71. Black lines: numerical
solutions of the model of Wu et al.50 The analytical solution is given by Eq. (37).

an effective viscosity index of ω = 0.75 is chosen to reproduce the
proper intermolecular potential of the air molecules.16,24 The num-
ber of rotational degrees is d = 2. The translational Eucken factor
is ftr = 2.4 as extracted from the Rayleigh–Brillouin experiments of
nitrogen.52 We first use the analytical expression (37) to obtain the
TMAC by comparing with the experimental data at δ > 10. From the
results in previous sections, the TSC can be extracted from the linear
function

σT = 0.294αM + 0.752, (38)

and the mass flow rate correction Qd for air can be calculated from

Qd = 4.182[1 − exp(−0.228αM)]. (39)

We find that when αM varies from 0.8 to 1, the results in Eq. (37) can
cover almost all the experimental data at temperature T = 424 K and
544 K. Then, we solve the Wu et al. model over a wide range of rar-
efaction parameter and find that the TMAC in the air experiments is
more likely 0.9, rather than αM = 1 used in Ref. 42.

C. Carbon dioxide
The comparisons of the TPD exponent for CO2 between the

measurements and solutions of the model of Wu et al. are shown
in Fig. 12, where the effective viscosity index is set to 0.93, while
the translational Eucken factor is ftr = 2.24 as extracted from the
Rayleigh–Brillouin experiments of carbon dioxide.52 The rotational
degrees is still equal to 2, since the three atoms in a CO2 molecule
line up. We estimate the values of TSC and the mass flow correction
Qd as

σT = 0.271αM + 0.576,
Qd = 4.726[1 − exp(−0.207αM)].

(40)

We can also see that, when δrp > 1, the experimental data at
T = 400 K can be well reproduced by the model of Wu et al. when
αM = 0.9, while the data at a higher temperature of T = 650 are

FIG. 12. The same as Fig. 11 except that now, CO2 is used.72

more close to solutions of the model of Wu et al. when αM = 0.8.
Note that the value of γ at δrp ≈ 0.45 is even below the profile of
αM = 0.8, which may be attributed to the inaccurate experimental
measurement at low gas pressures. Nevertheless, all experimental
data almost fall between the profiles of αM = 0.8 and 0.9, which sug-
gest that the TMAC in the CO2 experiment is more likely αM = 0.85
± 0.05.

VI. CONCLUSIONS
The thermal transpiration of molecular gas between two par-

allel plates and along cylinder tubes has been investigated based on
the model of Wu et al.,50 where the elastic and inelastic collisions are
modeled by the Boltzmann and Rykov46 collision operators, respec-
tively. In the limit of no inelastic collision, such a model is reduced
to the Boltzmann equation so that the role of intermolecular poten-
tial can be investigated. A synthetic iteration scheme is proposed to
find the steady-state solutions within dozens of iterations, which is
about two to three orders of magnitude faster than the conventional
iterative method in the transition and near-continuum flow regimes.
With this efficient and accurate method, the influence of intermolec-
ular potential and internal structure of molecular gases on the mass
flow rate and Knudsen layer function of thermal transpiration has
been studied systematically.

The role of intermolecular potential is reflected in the viscos-
ity index, which strongly affects the TSC and KLF. In numerical
simulations of monatomic gas, we found that the TSC and KLF
increase with the viscosity index, except in the cases where the
TMAC approaches zero (rare in real materials). When the viscos-
ity index is fixed for the diffuse–specular boundary condition, the
TSC increases linearly with TMAC. However, the TSC is a nonlinear
function of the TMAC αt in the CL boundary condition. We have
observed that the KLF holds similarities when the diffuse–specular
boundary condition is applied, i.e., Ud/Ud(x2 = 0) almost overlaps
with each other when TMAC changes; this similarity is slightly bro-
ken when the CL boundary condition is used. For molecular gas, we
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have found that the ratio of TSC between molecular and monatomic
gases is approximately the ratio of their translational Eucken factors.
Therefore, for some polar gases where the translational Eucken fac-
tor is much smaller than 2.5 of monatomic gas, the mass flow rate of
thermal transpiration can be much reduced.

An analytical expression of mass flow rate in thermal tran-
spiration is established up to the early transition regime, and val-
ues of TSC and KLF (hence Qd) are tabulated for typical viscosity
index, accommodation coefficients in gas-kinetic boundary con-
ditions, and translational Eucken factor. This expression may be
helpful for engineering applications. With the utilization of a more
realistic intermolecular potential, we have found that the TMACs
extracted from the thermal transpiration experiments of air and car-
bon dioxide along circular tubes are 0.9 and 0.85, respectively, rather
than one used in the literature. Also, the data presented in this paper
are useful, for example, in the pressure calibration of the capacitance
diaphragm gauge when measuring low gas pressures.
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