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a b s t r a c t 

The apparent gas permeability (AGP) of a porous medium is an important parameter to predict produc- 

tion of unconventional gas. The Klinkenberg correlation, which states that the ratio of the AGP to the in- 

trinsic permeability is approximately a linear function of reciprocal mean gas pressure, is one of the most 

popular estimations to quantify AGP. However, due to the difficulty in defining the characteristic flow 

length in complex porous media where the rarefied gas flow is multiscale, the slope in the Klinkenberg 

correlation varies significantly for different geometries such that a universal expression seems impossible. 

In this paper, by solving the gas kinetic equation using the general synthetic iterative scheme (GSIS), we 

compute the AGP in porous media that are represented by Sierpinski fractals and pore body/throat sys- 

tems. With the abilities of fast convergence to steady-state solution and asymptotic preserving of Navier- 

Stokes limit, it is shown that GSIS is a promising tool to simulate low-speed rarefied gas flow through 

complex multiscale geometries. A new definition of the characteristic flow length is proposed as a func- 

tion of porosity, tortuosity and intrinsic permeability of porous media, which enables to find a unique 

slope in the Klinkenberg correlation for all the considered geometries. This research also shows that the 

lattice Boltzmann method using simple wall scaling for the effective shear viscosity is not able to predict 

the AGP of porous media. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Unconventional gas consisting primarily of methane has be-

ome increasingly important in world energy supply due to its

reat potential to offset the decline in conventional gas produc-

ion. Although the industry has been focusing on a rapid produc-

ion, fundamental scientific questions regarding the flow behavior

n ultra-tight porous media remain to be answered for economi-

al production. In unconventional reservoirs, gas is often sourced

rom sedimentary rock, e.g. organic-rich shale, which is composed

f fine-grained material and has pore size in the range of nanome-

er [1] . The flow dynamics in such unconventional reservoirs is de-

ermined by different physical processes [2] : advection and diffu-

ion of compressed gas in pore space, adsorption and desorption

n solid surface, and dissolution of soluble gas in organic material.

n this paper, we focus on the transport of free gas and try to ob-

ain an improved understanding of the apparent gas permeability

APG) that describes how fast the gas can be extracted from ultra-

ight porous media. This is important, since the AGP at represen-
∗ Corresponding author. 
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ative elementary volume scale is a critical parameter in upscaling

quations that predict the gas production and lifespan of gas wells.

.1. Gas flow in conventional reservoirs 

For Stokes flow in highly permeable porous media, Darcy’s law

tates that the total discharge Q (units of volume per time) is pro-

ortional to the pressure gradient ∇p in the following form 

 = −k ∞ 

A 

μ
∇p, (1) 

here μ is the shear viscosity of fluid and A is the cross-section

rea of a porous medium. The intrinsic permeability k ∞ 

, which is

ndependent of the working fluid, reflects the geometry and topol-

gy of a porous medium only. For instance, a circular tube of diam-

ter D has k ∞ 

= D 

2 / 32 . For complex porous media, k ∞ 

is not only

 function of effective pore size but also other parameters, such as

he effective porosity, tortuosity and constriction factor [3–6] . 

Porosity ε is the fraction of connected pore volume in the to-

al volume of a porous medium. Tortuosity τ is a measure of the

ength of streamlines, which is usually defined as the ratio of the

hortest path L s traversed by a fluid particle to the straight-line

istance L between two interconnected points in pore space [7] .

https://doi.org/10.1016/j.compfluid.2020.104576
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104576&domain=pdf
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A larger tortuosity indicates that fluid needs to travel longer in

porous medium for a fixed L . Furthermore, constriction/expansion

of pores, which converges/diverges the streamlines, also affects

permeability. This effect is estimated by the constriction factor C

as follows: for a straight pore channel of length L , constriction fac-

tor C is defined as [6] 

 = 

1 

L 2 

∫ L 

0 

A 

2 
p (x 1 )d x 1 

∫ L 

0 

1 

A 

2 
p (x 1 ) 

d x 1 , (2)

where A p (x 1 ) is the cross-sectional area of pore space at location

x 1 . The intrinsic permeability in two-dimensional (2D) porous me-

dia with complex structures can be related to these geometrical

parameters as [5] 

k ∞ 

= 

L 2 e ε

12 τ 2 C 
, (3)

where L e is the effective pore size. Note that when ε = τ = C = 1

we have k ∞ 

= L 2 e / 12 , which is exactly the intrinsic permeability for

two parallel plates separated by a distance L e . 

1.2. Gas flow in unconventional reservoirs 

The intrinsic permeability in unconventional reservoirs is ex-

tremely low. Nevertheless, the gas permeability measured experi-

mentally can be significantly larger than the intrinsic permeability

[8,9] , which is called AGP in order to distinguish it from the intrin-

sic one. Through systematic experimental investigations Klinken-

berg concluded that the AGP (k a ) can be approximately expressed

as [8] 

k a = k ∞ 

(
1 + 

b 

p̄ 

)
, (4)

where b is the correction factor and p̄ is the mean gas pressure. 

The variation of AGP with respect to the gas pressure is due to

the rarefaction effect, which kicks in when the mean free path of

gas molecules is comparable to or even larger than the character-

istic flow length L c in ultra-tight porous media. The degree of gas

rarefaction is usually characterized by the Knudsen number Kn 

Kn = 

μ( T 0 ) 

p̄ L c 

√ 

πRT 0 
2 

, (5)

where T 0 is a reference temperature and R is the gas constant. Gas

flow is usually categorized into four regimes. When Kn � 0.001,

gas flow is within the continuum regime in which the tradi-

tional Navier-Stokes equations and Darcy’s law are accurate. When

0.001 � Kn � 0.1, the gas flow is in the slip regime where inad-

equate intermolecular collisions lead to velocity slip at solid sur-

face, and therefore the permeability is enhanced. Note that the

Navier-Stokes equations are still valid in the bulk region, i.e. a

few molecular mean free paths away from the solid surface [10] .

As Kn increases further, rarefaction effect modifies the constitu-

tive relations in the transition (0.1 � Kn � 10) and free-molecular

(10 � Kn ) regimes such that the Newton’s law of viscosity and

the Fourier’s law of heat conduction do not hold anymore [11] . As

a consequence, the traditional Navier-Stokes equations completely

lose their validity and the gas kinetic equation is enssential to de-

scribe the rarefied gas dynamics. 

The rarefaction effect of gas flow through ultra-tight porous

media has been extensively studied with the aim to reveal the cor-

relation between AGP and Knudsen number (or gas pressure). Ex-

perimental works were conducted and the expression for the cor-

rection factor b in the Klinkenberg correction has been obtained

in terms of porous media properties, e.g. the intrinsic permeability

and porosity [12–14] . Since it was obtained through data fitting,

the relation varies for different datasets [15] . For practical use, a
niversal expression for b in Eq. (4) is highly desirable. Theoret-

cal analysis has also been carried out to find more general cor-

elations. By applying the Navier-Stokes equations with first-order

lip velocity boundary condition to the Poiseuille flow through

 straight circular tube, it is found that the Klinkenberg correc-

ion (4) can be expressed as [16] 

 a = k ∞ 

( 1 + 4 Kn ) , (6)

hile based on the second-order slip boundary condition and the

bservation that the asymptotic value of normalized mass flow rate

or channel flow at high Knudsen number is constant, the follow-

ng correlation is proposed beyond the slip flow regime [17] 

 a = k ∞ 

( 1 + βKn ) 

(
1 + 

4 Kn 

1 + Kn 

)
, (7)

here β = ( 128 / 15 π2 ) tan 

−1 (4 Kn 0 . 4 ) is an empirical fitting from

he numerical solution of Boltzmann equation [16,18] . 

Note that in Eqs. (6) and (7) the characteristic flow length L c 
sed in the definition of Knudsen number is the tube radius. For

omplex porous media, it is assumed that these forms of corre-

ation still hold but the characteristic flow length (or equivalently,

he Knudsen number) needs to be chosen properly. In some works,

he Knudsen number is expressed in terms of the intrinsic perme-

bility, the effective porosity and the mean gas pressure as [16] :

n = a 0 
1 

p̄ 
k a 1 ∞ 

εa 2 , (8)

here the coefficients a 0 , a 1 and a 2 are calibrated by certain exper-

mental data, thus are not universal. An improved relation between

he effective pore size and the intrinsic permeability is proposed

y treating the flow passages in porous media as a bundle of tor-

uous capillary tubes [18] ; the formulation is similar to Eq. (3) but

ithout consideration of the constriction factor. More complex for-

ula for Kn in terms of the intrinsic permeability and geometrical

eatures of the porous media can be found in Ref. [19] , which is

erived based on the fractal model. Recently, Yang and Weigand

sed the effective pore size L e in Eq. (3) as the characteristic flow

ength and found that the enhancement in gas permeability in dif-

erent porous structures can be universally described by the Knud-

en number defined using this effective pore size [20] . However, in

heir numerical simulations, the impermeable grains are of equal

ize. Whether the universal definition of Kn works for other porous

edia remains to be assessed. 

.3. Numerical methods to solve rarefied gas flow in porous media 

With the technological advance in high-performance comput-

ng, rarefied gas flow through complicated geometry can now be

imulated based on the gas kinetic theory that is indispensable for

he description of gas flow in all flow regimes. The direct simu-

ation Monte Carlo (DSMC) method was used to investigate the

ressure-driven gas flows through porous media [20–23] . However,

ue to its statistical noise and the limitation that the spatial cell

ize should be smaller than the mean free path of gas molecules,

nly a few data points on the AGP were obtained, which may hin-

er the discovery of universal correlation. 

Alternatively, the gas kinetic equation can be solved by the

iscrete velocity method (DVM), which is promising at producing

tatistical-noise-free solution for low-speed gas flow that is typi-

al in porous media [24–26] . In the transition and free-molecular

ow regimes, the conventional iterative scheme (CIS) can find

he steady-state solution of gas kinetic equation efficiently and

ccurately. However, CIS converges extremely slowly for near-

ontinuum flow [27] . Worse still, its results are contaminated by

umerical dissipation if the spatial cell size is larger than the
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olecular mean free path. This poses a severe problem to simu-

ate multi-scale rarefied gas flows in complex porous media, since

n some region the gas flow is highly rarefied while in other parts

he gas flow falls in the near-continuum regime. To remove these

eficiencies, the general synthetic iterative scheme (GSIS) [28] is

ecently developed to find steady-state solution of general rar-

fied gas flow within dozens of iterations at any Knudsen num-

er. What’s more, the GSIS asymptotically preserves the Navier-

tokes limit, so that the spatial cell size can be much larger than

he molecular mean free path. These advantages make the GSIS a

romising tool to tackle the difficulty of CIS in simulating multi-

cale rarefied gas flows. 

It should be noted that recently, the lattice Boltzmann method

LBM) has been used to simulate the rarefied gas flows through

orous media [29–34] . Rooted from the gas kinetic theory, LBM

s a powerful tool originally designed to solve the incompress-

ble Navier-Stokes equations based on the Bhatnager-Gross-Krook

BGK) equation [35] and the bounce-back scheme (in which gas

olecules colliding with the wall simply reverse the direction of

elocity [36] ). Since one of the signatures of rarefied gas flow is

he velocity slippage at the wall, the bounce-back and specular-

eflection boundary conditions are combined to simulate the slip

otion of gas at solid wall [37,38] . To improve LBM for more

arefied gas flow, Shan et al. proposed to use high-order Gauss-

ermite quadrature to approximate the velocity distribution func-

ion [39] , while Zhang et al. introduced the wall-scaling relax-

tion time to the traditional LBM to describe the effective viscos-

ty within the Knudsen layer [40] . Further development was made

y Guo et al., where in addition to the wall scaling relaxation

ime, a generalized model of combined bounce-back and specular-

eflection was proposed to realize the second-order slip boundary

ondition [41] ; their multiple relaxation time (MRT) LBM is able

o prediction the velocity profile and mass flow rate of Poiseuille

ow between two parallel plates up to the free-molecular flow

egime. However, by comparing with the accurate solution of the

GK model equation, it was found that the accuracy of MRT-LBM is
 r  

ig. 1. Schematic geometries of the porous media, where the white and shaded regions 

L3’ denote the first three levels of Sierpinski fractals. (b) Pore body/throat system: ‘G1’, ‘G

ed dash line in each subfigure shows the imaginary flow path. 
educed significantly in simulating rarefied gas flow through com-

lex geometry, such as rough surface and porous media [42] . 

The aims of this paper are three-fold. First, we will test the ef-

ciency and accuracy of the newly introduced GSIS in simulating

ulti-scale rarefied gas flow through porous media. Second, based

n the accurate solution of gas kinetic equation, we will further as-

ess the accuracy of LBM that was recently applied to find the AGP

hrough porous media represented by the Sierpinski fractal model

29] and a simplified pore body/throat system [30] . Finally, we will

nd a unique expression of the slope coefficient in the Klinkenberg

orrection that quantifies AGP in the slip flow regime. 

The remainder of this paper is organized as follows. The consid-

red geometries are described in Section 2 . In Section 3 , the lin-

arized BGK equation and GSIS are introduced. Numerical results

nd discussions are presented in Section 4 , including the compari-

on between CIS and GSIS in terms of efficiency and accuracy, com-

arison between GSIS and LBM for the calculated intrinsic perme-

bilities, flow fields and AGP through various porous media. A uni-

ersal expression for the Klinkenberg correction for the two types

f geometry is proposed in Section 4 . Finally, conclusions are given

n Section 5 . 

. Statement of the problem 

In this work, we consider 2D porous media in Fig. 1 , where the

hite and shaded regions represent the pore voids and imperme-

ble obstacles, respectively. The first set of geometries is generated

ecursively by the Sierpinski fractal model [43,44] . That is, a square

f size 1 by 1 is cut into 9 congruent sub-squares in a 3 × 3 grid,

nd the central sub-square is modeled as an obstacle. The same

rocedure is then applied to the remaining 8 sub-squares for the

ext level of recursion. Resulting geometries generated by the first

hree levels of recursion are shown in Fig. 1 (a), which are marked

s ‘L1’, ‘L2’ and ‘L3’, respectively. The second set of geometries is

hown in Fig. 1 (b). The simple pore body/throat system has four

ectangles that are used to represent impermeable obstacles. Alter-
represent the pore voids and impermeable obstacles, respectively. (a) ‘L1’, ‘L2’ and 

2’ and ‘G3’ denote three geometries with fixed porosity but varying tortuosity. The 
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Table 1 

Porosity ε, tortuosity τ and constriction factor C for the six geometries 

shown in Fig. 1 . 

Sierpinski fractals pore body/throat systems 

L1 L2 L3 G1 G2 G3 

ε 0.8889 0.7901 0.7023 0.8507 0.8470 0.8526 

τ 1.3333 1.3333 1.3333 1.1120 1.2240 1.3920 

C 1.1621 1.3358 1.5396 1.0784 1.5314 3.6375 
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ing the sizes and positions of these rectangles changes the porosi-

ties and tortuosities. In order to investigate the influence of tortu-

osity on gas permeability, we consider three different geometries

(marked as ‘G1’, ‘G2’ and ‘G3’), which have the same porosity of

about 0.85, but different values of tortuosity. Note that the defini-

tion of tortuosity is not unique [3] ; here it is defined as the ratio

of the shortest path that a fluid particle traverses and the straight-

line distance between its original source and destination. As shown

in Fig. 1 (b), we consider an imaginary flow path, the ends of which

(labeled as ‘A’ and ‘B’) are at the centers of the inlet and outlet, re-

spectively. For simplification, we assume that the fluid only makes

quarter turn when they encounter the obstacles. Thus, the geomet-

ric tortuosities for G1, G2 and G3 are about 1.11, 1.22 and 1.39,

respectively. The same procedure can be applied to the Sierpinski

fractals, and it is found that L1, L2 and L3 have the same tortuosity

of 1.33. 

The geometrical properties for the six porous media are sum-

marized in Table 1 . In addition to their porosity ε and tortuosity

τ , the constriction factor C defined in Eq. (2) are also listed. We

will calculate the AGP of these porous media and check whether

it is possible to obtain a unique expression for the slope factor in

the Klinkenberg correlation. To this end, we assume that gas flows

through the porous media from left to right in the x 1 direction,

driven by a small enough constant pressure gradient X p . We are

interested in the velocity field and AGP over a range of Knudsen

number. 

3. Gas kinetic theory and numerical methods 

3.1. The linearized BGK equation 

In gas kinetic theory, gas system state is described by the veloc-

ity distribution function, which is a function of the spatial position

x , molecular velocity v , and time t . Evolution of the velocity distri-

bution function f is governed by the following Boltzmann equation

∂ f 

∂t 
+ v · ∂ f 

∂ x 
+ a · ∂ f 

∂ x 
= C ( f ) , (9)

where x = ( x 1 , x 2 , x 3 ) is the spatial coordinates normalized b y

the height of a porous medium H , v = ( v 1 , v 2 , v 3 ) is the three-

dimensional molecular velocity space normalized by the most

probable speed v m 

= 

√ 

2 RT 0 , t is the time normalized by H/ v m 

,

the velocity distribution function f is normalized by ρ0 v 3 m 

/M with

M being the molecular mass, a = ( a 1 , a 2 , a 3 ) is the external accel-

eration normalized by v 2 m 

/H. Finally, C is the Boltzmann collision

operator, which is usually replaced by the BGK model [35] . 

For gas flow through porous media, the pressure gradient X p =
d p/ d x 1 , which is normalized by p̄ /H, is small. Then, we can lin-

earize the velocity distribution function about the global equilib-

rium f eq by introducing a small perturbation h 

f = f eq ( 1 + h ) , f eq = 

exp 

(
−| v | 2 )
3 / 2 

, (10)

π

here h is governed by the following linearized BGK equation

45] 
√ 

π

2 Kn 

h + v · ∂h 

∂ x 
= −X p v 1 + 

√ 

π

2 Kn 

L ( �, u , τ ) , 

L ( �, u , τ ) = � + 2 u · v + τ
(
| v | 2 − 3 

2 

)
, (11)

ith ϱ being the perturbed flow density, u = ( u 1 , u 2 ) the bulk flow

elocity and τ the perturbed flow temperature. Here, we have

mitted the derivative with respect to the time since we are only

nterested in steady-state solution. 

.2. Discrete velocity method for 2D problem 

The perturbation h in Eq. (11) is defined in a six-dimensional

hase space. For 2D problem, however, the phase space can be cast

nto a four-dimensional one by introducing the following two re-

uced velocity distributions 

	( x 2D , v 2D ) = 

1 √ 

π

∫ 
exp 

(
−v 2 3 

)
h d v 3 , 

( x 2D , v 2D ) = 

1 √ 

π

∫ (
v 2 3 −

1 

2 

)
exp 

(
−v 2 3 

)
h d v 3 . (12)

ote that we use x 2D = (x 1 , x 2 ) and v 2D = (v 1 , v 2 ) to denote the

D physical space and molecular velocity space, respectively. The

overning equations for 	 and 
 are obtained by multiplying

q. (11) with exp (−v 2 
3 
) / 

√ 

π and 

(
v 2 

3 
− 1 / 2 

)
exp (−v 2 

3 
) / 

√ 

π, respec-

ively, and integrating the resulting equations with respect to v 3 √ 

π

2 Kn 

	 + v 2D ·
∂	

∂ x 2D 

= −X p v 1 + 

√ 

π

2 Kn 

L 	, 

√ 

π

2 Kn 


 + v 2D ·
∂


∂ x 2D 

= 

√ 

π

2 Kn 

L 
, (13)

here L 	( �, u , τ ) = � + 2 u · v 2D + τ
(| v 2D | 2 − 1 

)
and L 
( τ ) = τ/ 2 .

he perturbed density ϱ, bulk velocity u and perturbed tempera-

ure are obtained from the velocity moment of the perturbed ve-

ocity distribution function as 

 = 

∫ 
	 f 2D 

eq d v 2D , 

u = 

∫ 
v 2D 	 f 2D 

eq d v 2D , 

τ = 

2 

3 

∫ [(| v 2D | 2 − 1 

)
	 + 


]
f 2D 
eq d v 2D , (14)

here f 2 D eq = exp 

(
−| v 2D | 2 

)
/π . For conciseness, we will omit the

ubscript/superscript ‘2D’ in the remainder of the paper. 

To numerically solve Eq. (13) , the discrete velocity method

DVM) is employed, in which the continuous molecular velocity

pace is first represented by a set of discrete velocities. Theoret-

cally, any set of quadrature points for the approximation of in-

egration with respect to v is applicable. However, for an accu-

ate approximation, especially for efficient capture of the discon-

inuity and rapid variation in velocity distribution function at large

nudsen number, the following non-uniform discretization is more

referable: 

 

j i 
i 

= 

j 3 
i 

( N v − 1 ) 
3 

v max , i = 1 or 2 , (15)

here the index j i = −N v + 1 , −N v + 3 , . . . , N v − 1 with N v being

he number of discrete velocities. Note that the molecular veloc-

ty space can also be discretized by the Gauss-Hermite quadrature

s that used in LBM, however this type of discretization is not ac-

urate/efficient for flow at large Knudsen number [42] . 

It should be mentioned that the MRT-LBM using very limited

umber of discrete velocities, e.g. the D2Q9 scheme for 2D prob-

em, is able to predict the Poiseuille flow between two parallel
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lates with good accuracy up to the free-molecular flow regime.

his is achieved by introducing gas kinetic boundary condition, as

ell as effective geometry-dependent viscosity that is a function of

he gas-wall distance. However, this scheme is only designed for

lanar walls [41] . In Section 4 we will show that the MRT-LBM

oses its accuracy for complex geometry such as porous medium. 

.3. Conventional iterative scheme 

After discretization in the phase space, the steady-state solu-

ion of Eq. (13) is usually solved straightforwardly by the following

onventional iterative scheme (CIS) 
√ 

π

2 Kn 

	 j,k +1 + v j · ∂	 j,k +1 

∂ x 
= −X p v j 1 1 

+ 

√ 

π

2 Kn 

L 

k 
	, 

√ 

π

2 Kn 


 j,k +1 + v j · ∂
 j,k +1 

∂ x 
= 

√ 

π

2 Kn 

L 

k 

, (16) 

here 	 j ( x 1 , x 2 ) = 	(x 1 , x 2 , v 
j 1 
1 

, v j 2 
2 

) and 
 j ( x 1 , x 2 ) =
(x 1 , x 2 , v 

j 1 
1 

, v j 2 
2 

) represent the perturbations at discrete ve-

ocity nodes v j = (v j 1 
1 

, v j 2 
2 

) , while L 

k 
	

= L 	

(
� 

k , u 

k , τ k 
)

and

 

k 



= L 


(
τ k 

)
. The superscripts k and k + 1 denote two con-

ecutive iteration steps. The macroscopic quantities ϱk , u 

k and τ k 

re evaluated from Eq. (14) with the integration approximated by

umerical quadrature. 

During each iteration, Eq. (16) should be supplied with the gas

inetic boundary condition to determine 	j and 
 j at boundary.

n this paper, the left and right boundaries where gas flows in and

ut the porous media are modeled as periodic boundary, written

s 

	 j ( x 1 = 0 , x 2 ) = 	 j 
(

x 1 = 

L 

H 

, x 2 

)
, 

j ( x 1 = 0 , x 2 ) = 
 j 
(

x 1 = 

L 

H 

, x 2 

)
, (17) 

here L is the length of the computational domain. The lower and

pper boundaries, as well as the surfaces of the impermeable ob-

tacles inside porous media are modeled as fully diffuse boundary.

uppose the static surfaces are at the reference temperature T 0 and

he mass flux across surface is equal to zero, then the perturba-

ions for the reflected molecules (i.e., when v j · n > 0, n is the

utward unit normal vector at the solid surface) are given by 

	 j = − 2 √ 

π

∑ 

v j ·n < 0 
v j · n 	 j exp 

(
−| v j | 2 )�v j , 

j = 0 , (18) 

here �v j = �v j 1 
1 

�v j 2 
2 

is the velocity intervals with �v j i 
i 

=
 v max j 

2 
i 
/ (N v − 1) 3 , since the non-uniform velocity grid (15) is

sed. 

.4. General synthetic iterative scheme 

CIS is efficient and accurate to find steady-state solution in

he transition and free-molecular flow regimes. However, it con-

erges extremely slowly for near-continuum flow, where the “con-

erged” solution is usually wrong due to large numerical dissipa- 

ion [27,46] . To facilitate fast convergence and reduce the numer-

cal viscosity in the near-continuum flow regime, GSIS is recently

roposed [28] . The key ingredient of GSIS is that a set of macro-

copic equations is simultaneously solved with the kinetic Eq. (16) ,

rom which the macroscopic flow properties are obtained to guide

he evolution of molecular velocity distribution function. Due to

he fact that the constitutive relations involving in the synthetic

acroscopic equations explicitly contain not only the Newton’s law

f viscosity and the Fourier’s law of thermal conduction but also
igh-order terms exactly derived from the kinetic equation, GSIS

as the capacities to achieve fast convergence, asymptotically pre-

erve the Navier-Stokes limit, and keep accuracy for rarefied effect.

or this problem, the synthetic macroscopic equations are written

s 

∂u 1 

∂x 1 
+ 

∂u 2 

∂x 2 
= 0 , 

∂� 

∂x 1 
+ 

∂τ

∂x 1 
+ 

∂σ11 

∂x 1 
+ 

∂σ12 

∂x 2 
= −X p , 

∂� 

∂x 2 
+ 

∂τ

∂x 2 
+ 

∂σ12 

∂x 1 
+ 

∂σ22 

∂x 2 
= 0 , 

∂q 1 
∂x 1 

+ 

∂q 2 
∂x 2 

= 0 , (19) 

nd the constitutive relations for the shear stress σ lm 

and heat flux

 l ( l, m = 1 , or 2 ) are 
√ 

π

2 Kn 

σlm 

+ 

∂u l 

∂x m 

+ 

∂u m 

∂x l 
− 2 

3 

(
∂u 1 

∂x 1 
+ 

∂u 2 

∂x 2 

)
δlm 

+ HoT σlm 
= 0 , 

√ 

π

2 Kn 

q l + 

5 

4 

∂τ

∂x l 
+ HoT q l = 0 , (20) 

here δlm 

is the Kronecker delta function. The high-order terms

oT σlm 
and HoT q l that take account of rarefaction effects are 

oT σlm 
= 

∑ 

n =1 , 2 

∂ 

∂x n 

∫ 
2 v n 

[(
v l v m 

− δlm 

3 

| v | 2 − δlm 

6 

)
	

−δlm 

3 




]
f eq d v −

[
∂u l 

∂x m 

+ 

∂u m 

∂x l 
− 2 

3 

(
∂u 1 

∂x 1 
+ 

∂u 2 

∂x 2 

)
δlm 

]
, 

HoT q l = 

∑ 

n =1 , 2 

∂ 

∂x n 

∫ 
v n v l 

[(| v | 2 − 2 

)
	 + 


]
f eq d v − 5 

4 

∂τ

∂x l 
. (21) 

The periodic boundary condition for ϱ, u and τ at the left

nd right boundaries is used to solve the synthetic macroscopic

qs. (19) , while the boundary condition for the macroscopic flow

roperties at the solid surfaces is directly evaluated according to

q. (14) , in order to ensure the correct slip velocity and tempera-

ure jump. 

Finally, the procedure to execute GSIS is described as follows

where the index j for the discrete velocities has been omitted): 

• Step 1. When the velocity distribution functions 	k and 
k are

known at the k -th iteration, we calculate the macroscopic flow

properties ϱk , u 

k and τ k according to Eq. (14) . We also calcu-

late the velocity distribution functions 	k +1 / 2 and 
k +1 / 2 by

the conventional iterative scheme, i.e. we solve 
√ 

π

2 Kn 

	k +1 / 2 + v · ∂	k +1 / 2 

∂ x 
= −X p v 1 + 

√ 

π

2 Kn 

L 

k 
	, 

√ 

π

2 Kn 


k +1 / 2 + v · ∂
k +1 / 2 

∂ x 
= 

√ 

π

2 Kn 

L 

k 

. (22) 

• Step 2. From 	k +1 / 2 and 
k +1 / 2 , we calculate the high-order

terms HoT σlm 
and HoT q l defined in Eq. (21) , as well as the

macroscopic quantities � 

k +1 / 2 , u 

k +1 / 2 and τ k +1 / 2 . 
• Step 3. We obtain the flow properties � 

k +1 , u 

k +1 and τ k +1 by

solving the synthetic Eqs. (19) . Note that the Newton’s law of

viscosity and the Fourier’s law of thermal conduction in the

constitutive relations (20) are calculated at the (k + 1) -th iter-

ation step, while high-order terms HoT σlm 
and HoT q l are com-

puted at the ( k + 1 / 2 ) -th iteration step. 
• Step 4. The velocity distribution functions are updated to incor-

porate the change of macroscopic quantities 

	k +1 = 	k +1 / 2 + λ� + 2 v · λu + λτ

(| v | 2 − 1 

)
, 


k +1 = 
k +1 / 2 + 

1 

λτ , (23) 

2 
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where 

λ� = α
(
� 

k +1 − � 

k +1 / 2 
)
, 

λu = α
(
u 

k +1 − u 

k +1 / 2 
)
, 

λτ = α
(
τ k +1 − τ k +1 / 2 

)
, (24)

and 

α = 

min ( Kn loc , 1 ) 

Kn loc 

, (25)

with Kn loc being the local Knudsen number, is a stabilization

factor that is introduced to make the GSIS stable when Kn loc is

large. The definition of Kn loc used in this paper is specified in

the next section. 
• Step 5. The above steps are repeated until convergence. 

It can be proven theoretically [47] that (i) the GSIS finds the

steady-state solution quickly and (ii) like the implicit unified gas

kinetic scheme [48] the GSIS asymptotically preserves the Navier-

Stokes limit when the Knudsen number is small. For the property

(i), the fast convergence of GSIS is reached not only due to the

exact inclusion of the Navier-Stokes constitutive relations in (20) ,

but also in each iteration for the kinetic equation, the macroscopic

synthetic equations are solved to steady state. For the property (ii),

it is interesting to note that the coupling of streaming and collision

in the evaluation of flux at the cell interface [48] is not the only

way to realize the asymptotic Navier-Stokes preserving. Therefore,

the kinetic equation is not necessary solved under the framework

of unified gas kinetic scheme. 

4. Results and discussions 

In this paper, the 4th-order discontinuous Galerkin (DG)

method is applied to discretize the governing Eqs. (13) and (19) on

triangular meshes in the physical space. The sweeping technique is

employed to solve the kinetic equations to avoid solving large lin-

ear system. The hybridizable discontinuous Galerkin method [49] is

applied to solve macroscopic equations. More details about the im-

plementation of DG discretization can be found in Refs. [28,50,51] .

Fig. 2 shows the schematic triangular meshes, where refinement is

placed near the solid boundaries. 

In addition to the velocity field, we are also interested in the

mean volumetric flow rate M and the dimensionless AGP κa . The

two quantities are evaluated as 

M = 

H 

LX p 

∫ ∫ 
u 1 d x 1 d x 2 , κa = −2 Kn √ 

π
M . (26)

CIS and GSIS are used to find the steady-state solutions, where

the iteration is terminated when the residual in flow velocity be-
Fig. 2. Schematic triangular meshes for (a) Sierpinski
ween two consecutive iteration steps 

 = 

∫ ∫ (| u 

k +1 | − | u 

k | )2 
d x 1 d x 2 ∫ ∫ (| u 

k +1 | )2 
d x 1 d x 2 

(27)

s less than 10 −5 . The local Knudsen number to calculate the stabi-

ization factor for GSIS in Eq. (24) is estimated as K n loc = K nH/H min 

ith H min the minimum height of the local mesh triangle. 

In order to ensure the simulation results are accurate, the con-

ergence study is performed by using different numbers of N v and

ifferent triangular meshes. Eventually, 1024, 4608 and 16384 tri-

ngles are used for the first three levels of Sierpinski fractals, re-

pectively, while 4088, 3488, and 3520 triangles are used for the

ore body/throat system G1, G2 and G3, respectively. For the dis-

retization in the molecular velocity space, the non-uniform dis-

retization of v max = 4 and N v = 48 is employed for all flows with

n ∈ [0.001, 10], see Eq. (15) , and the 8-point Gauss-Hermite

uadrature is used to find the intrinsic permeability of each ge-

metry at Kn = 10 −5 . Further increment of the number of velocity

oints and triangles would improve the results of M by no more

han 1%. 

.1. Efficiency and accuracy of CIS and GSIS 

Rarefied gas flows through the Sierpinski fractal L2 and the

ore body/throat system G2 are solved by CIS and GSIS, when

n ∈ [0.001, 10]. Fig. 3 (a) and (c) plot the number of iterations

eeded to reach the convergence criterion of R < 10 −5 . For the

ow through geometry L2 with Kn ≤ 1, the number of iterations in

IS dramatically increases as the Knudsen number decreases, while

t slightly increases as Kn varies from 1 to 10. For instance, CIS

akes 13908, 22 and 90 iterations to find the steady-state solutions

hen Kn = 0 . 001 , 1 and 10, respectively. For the flow through G2,

he number of iterations of CIS increases monotonically as Kn de-

reases: CIS takes 30393, 39 and 30 iterations to find the steady-

tate solutions at Kn = 0 . 001 , 1 and 10, respectively. In contrast,

SIS obtains steady-state solution within dozens of iterations at

ny Knudsen number. At Kn = 0 . 001 , GSIS only needs 18 and 17

teps to reach convergence for the flows through L2 and G2 ge-

metries, respectively. Due to the fact that the CPU time consumed

o solve macroscopic equations is much smaller than that for the

inetic equation, the save of CPU time for GSIS is equivalent to

he save in iteration number; and this is significant when Knud-

en number is small. For example, CIS costs about 280 hours to

btain the converged result for L2 geometry at Kn = 0 . 001 on sin-

le Intel Xeon-E5-2680 processor, while GSIS only needs 0.4 hour.

ig. 3 (b) and (d) show the volumetric flow rate M obtained from

IS and GSIS for L2 and G2 geometries, respectively. Both schemes
 Carpet L2 and (b) pore body/throat system G2. 
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Fig. 3. Comparison between CIS and GSIS in terms of the number of iterations to reach convergence ( R < 10 −5 ) and the obtained volumetric flow rate. (a, b) The second 

level Sierpinski fractal L2. (c, d) The pore body/throat system G2. 
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redict almost the same solutions in the whole Knudsen range,

hich proves the accuracy of GSIS. 

.2. Comparison between LBM and GSIS 

Recently, the MRT-LBM with modified viscosity and boundary

ondition was used to find the AGP of the Sierpinski fractals and

he pore body/throat system, where the diffuse reflection condition

r the combined bounce-back and specular reflection condition are

pplied at solid surfaces [29,30] . However, the method may lose

ccuracy in simulating rarefied gas flow through complex geom-

try, since the limited number of discrete velocity points used in

RT-LBM are not adequate to describe the velocity distribution

unction [42] . Here we compare the velocity fields and the AGP

btained from LBM and GSIS. 

Fig. 4 plots the horizontal velocity contours and streamlines ob-

ained from GSIS for the Sierpinski fractals at Kn = 0 . 01 , 0.1 and 1.

t each Knudsen number, as more impermeable solids are added,

he porosity decreases, the flow passage becomes narrow, and the

agnitude of velocity decreases. Due to the constricting and ex-

anding of pore space, noticeable vortexes appear in the local flow

eld in L2 and L3 geometries. However, no vortex appears in the

rst level fractal for all the Knudsen numbers considered. On the

ontrary, LBM predicts large vortexes in the flow field of L1 geome-

ry, see Fig. 10 in Ref. [29] . Fig. 5 shows the horizontal velocity con-

ours and streamlines obtained by GSIS for the pore body/throat

ystems at Kn = 0 . 01 , 0.1 and 1. At each Knudsen number, the

agnitude of horizontal velocity drops as the tortuosity increases.

or each geometry, the magnitude of horizontal velocity drops as
he Knudsen number becomes large. For all the considered geome-

ries and Knudsen numbers, the largest velocity occurs in the nar-

owest flow passage, i.e. these beneath and above the left solid ob-

tacle. 

AGPs obtained from GSIS and MRT-LBM [29,30] are plotted in

ig. 6 as a function of Knudsen number. It is found that the en-

ancement in AGP becomes significant as the degree of rarefaction

ncreases, while the decrement of porosity or increment of tortu-

sity results in the reduction of AGP. For the three levels of Sier-

inski fractals and the pore body/throat system G2, LBM underes-

imates the AGP at most of the Knudsen numbers in the range of

0.1,1] and the discrepancy between GSIS and LBM results enlarges

s Knudsen number increases or the geometry becomes more com-

lex. For the third level Sierpinski fractal L3, the AGP from DVM

s about 2 . 22 × 10 −2 at Kn = 1 , while the one from LBM is only

 . 28 × 10 −4 , which is smaller than the former one by two orders

f magnitude. 

.3. Intrinsic permeability 

To quantify the Klinkenberg effect, the intrinsic permeability

hould be found first. To this end, we use LBM and GSIS to cal-

ulate the permeability at Kn = 10 −5 . The standard LBM with the

ounce-back boundary condition is used to recover the non-slip

ow in the continuum regime. The inlet and outlet boundaries

re treated as periodic condition as that in GSIS. More details can

e found in Ref. [26] . The LBM uses 1051 × 1051, 1801 × 1801

nd 2701 × 2701 discrete physical grids for the first, second and

hird level Sierpinski fractals, respectively, and 2501 × 1001 for the
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Fig. 4. Horizontal velocity contours and streamlines in Sierpinski fractals. From upper to bottom, the three rows show the GSIS results obtained on the spatial grids with 

1024, 4608 and 16384 triangles for the first, second and third levels, respectively. From left to right, the three columns are the results at Kn = 0 . 01 , 0.1 and 1, respectively. 

The velocity space is discretized by Eq. (15) with N v = 48 and v max = 4 . 

Table 2 

The intrinsic permeability κ∞ ( × 10 3 ) when Kn = 10 −5 . 

Sierpinski fractals pore body/throat systems 

L1 L2 L3 G1 G2 G3 

GSIS 8.9749 1.0997 0.1188 11.1888 4.5427 0.8386 

LBM 8.9149 1.0898 0.1162 11.1064 4.4958 0.8176 
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three pore body/throat geometries. The computational configura-

tions for GSIS are given in the beginning of Section 4 , except that

here 36864 triangles are used for the Sierpinski fractal L3. 

The intrinsic permeabilities κ∞ 

are listed in Table 2 , where GSIS

needs 9 to 16 iterations to obtain converged solutions. The CPU

time consumed by GSIS is much less than that by LBM due to its

implicit nature. For example, for the L2 geometry, GSIS takes 158

seconds on single processor, while LBM costs more than two days.

From the table, we can see that the relative discrepancies in the

intrinsic permeability between the results from GSIS and LBM are

less than 1%, except the ones for the Sierpinski fractal L3 and the

pore body/throat system G3, which are about 2.2% and 2.5%. This

is probably due to the presence of small flow passages in these

geometries, where the local Knudsen number is not so small thus
he slip velocity makes the GSIS results slightly larger than those

rom SRT-LBM. 

Our numerical results also show that, for the Sierpinski fractals,

he intrinsic permeability decreases as the fractal level increases.

he permeabilities for the second and third fractals are about 12.3%

nd 1.3% of that for the first level geometry, respectively. The re-

uction in κ∞ 

is mainly due to the reduction of porosity. For the

ore body/throat geometries which have the same porosity, the G3

ystem of the largest tortuosity and narrowest flow passages pos-

esses intrinsic permeability as small as about 7.5% and 18.5% of

hat for the G1 and G2 systems, respectively. 

Note that the maximum height of triangle in the spatial meshes

sed in GSIS is larger than the mean free path of gas molecules by

ore than 700 times. The agreement between SRT-LBM and GSIS

hows the accuracy of GSIS even on coarse physical grid. This is

ue to the fact that the velocity distribution function is corrected

y the solution of the synthetic macroscopic equations, which

symptotically preserve the Navier-Stokes limit when Kn → 0. 

.4. Slip factor in Klinkenberg correction 

Now, we quantify the ratio of the AGP to the intrinsic perme-

bility for the six geometries in the slip flow regime. In the mul-

iscale flow problem, the local degree of rarefaction can be signifi-
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Fig. 5. Horizontal velocity contours and streamlines for the pore body/throat systems. From upper to bottom, the three rows show the GSIS results obtained on the spatial 

grids with 4088, 3488 and 3520 triangles for geometries G1, G2 and G3, respectively. From left to right, the three columns are the results at Kn = 0 . 01 , 0.1 and 1, respectively. 

The velocity space is discretized by Eq. (15) with N v = 48 and v max = 4 . 

Fig. 6. Comparison on the AGP obtained from LBM and GSIS. (a) The Sierpinski fractals. (b) The pore body/throat system. LBM results in (a) and (b) are from Ref. [29] and 

Ref. [30] , respectively. 
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Fig. 7. Variation of the ratio of the AGP to the intrinsic permeability with the equivalent Knudsen numbers Kn ∗ . The characteristic flow length in Kn ∗ is defined either by (a) 

Eq. (28) or (b) Eq. (30) . 

Table 3 

The slope c̄ in the linear correlation of the ratio of AGP to intrinsic permeability with the equivalent 

Knudsen number, κa /κ∞ = 1 + ̄c Kn ∗ for the 6 geometries shown in Fig. 1 . 

L c defined by L1 L2 L3 G1 G2 G3 

Eq. (28) 9.7257 9.4109 9.3039 8.0684 9.5547 17.1482 

Eq. (30) 7.7373 7.0517 6.4240 7.3679 6.9734 7.6100 
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cantly underestimated if the characteristic flow length is chosen to

be the channel height. To include the different pore structures for

different porous media, Yang and Weigand [20] defined the char-

acteristic flow length according to Eq. (3) : 

L c,1 = τ

√ 

12 κ∞ 

C 

ε
. (28)

We plot the ratio of κa and κ∞ 

against the equivalent Knud-

sen number K n ∗ = K nH/L c,1 based on the definition of character-

istic flow length (28) in Fig. 7 (a) for all the six geometries. It

can be seen that the ratio of the AGP to the intrinsic permeabil-

ity monotonously increases as the degree of rarefaction intensifies.

The Klinkenberg correlation can be rewritten into the following

form 

κa 

κ∞ 

= 1 + c̄ Kn 

∗, (29)

where the values of slope c̄ obtained by linear regression are listed

in Table 3 . It is found that c̄ for the three fractal geometries are

close and are around 10. However, for the three pore body/throat

systems, c̄ varies significantly, which is due to the strong variation

of the constriction factor C , see Table 1 . 

We propose to estimate the characteristic flow length by the

following relation without considering the constriction factor 

L c,2 = 

√ 

12 κ∞ 

τ

ε
. (30)

The ratio of the AGP to the intrinsic permeability with respect

to the equivalent Knudsen number K n ∗ = K nH/L c,2 based on the

definition of characteristic flow length (30) is plotted in Fig. 7 (b).

Now, the correlations between κa / κ∞ 

and Kn ∗ for all the geome-

tries fall nearly in one single line. The values of slope in the linear

correlation are list in Table 3 . Therefore, a unique expression of the

Klinkenberg correlation with the slope of about 7 is established for
ll the six geometries considered, when the Knudsen number char-

cterized by the new characteristic flow length (30) is within the

lip flow regime, see Fig. 7 (b). 

. Conclusions 

In summary, we have investigated the rarefied gas flows

hrough porous media based on the gas kinetic equation. First,

SIS is applied to find the steady-state solutions from the con-

inuum to free molecular regimes, where the numerical compar-

sons with LBM in continuum flow regime and the conventional

terative scheme in rarefied regime proved its accuracy and effi-

iency in the simulation of multi-scale gas flows. That is, GSIS can

nd converged solution within dozens of iterations at any Knud-

en number, and the spatial cell size is not limited by the molec-

lar mean free path. Second, we have shown that MRT-LBM is not

ccurate in the calculation of apparent gas permeability of porous

edia, due to the use of limited number of discrete velocities and

mproper gas-surface boundary conditions. Third, based on the six

orous geometries considered in this work, we have proposed a

ew definition of characteristic flow length, which is a function

f porosity, tortuosity and intrinsic permeability of porous media.

ith this new characteristic flow length, a unique slope coefficient

f about 7 in the Klinkenberg correlation has been found. 

Our results could serve as benchmark data to assess the accu-

acy of other schemes in simulating rarefied gas flow in complex

eometry over a wide range of Knudsen number. Also, the numeri-

al method can be used to calculate the apparent gas permeability

fficiently to a high fidelity. 
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