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Based on an accurate numerical solution of the kinetic equation using well-resolved spatial
and velocity grids, the separation of rarefied gas flow in a microchannel with double
rectangular bends is investigated over a wide range of Knudsen and Reynolds numbers.
Rarefaction effects are found to play different roles in flow separation (vortex formation)
at the concave and convex corners. Flow separations near the concave and convex corners
are only observed for a Knudsen number up to 0.04 and 0.01, respectively. With further
increase of the Knudsen number, flow separation disappears. Due to the velocity slip at the
solid walls, the concave (convex) vortex is suppressed (enhanced), which leads to the late
(early) onset of separation of rarefied gas flows with respect to the Reynolds number. The
critical Reynolds numbers for the emergence of concave and convex vortices are found
to be as low as 0.32 × 10−3 and 30.8, respectively. The slip velocity near the concave
(convex) corner is found to increase (decrease) when the Knudsen number increases. An
adverse pressure gradient appears near the concave corner for all the examined Knudsen
numbers, while for the convex corner it only occurs when the Knudsen number is less than
0.1. Due to the secondary flow and adverse pressure gradient near the rectangular bends,
the mass flow rate ratio between the bent and straight channels of the same length is a
non-monotonic function of the Knudsen number. Our results clarify the diversified and
often contradictory observations reported in the literature about flow rate enhancement
and vortex formation in bent microchannels.

Key words: micro-/nano-fluid dynamics, rarefied gas flow

1. Introduction

Gas flow in microchannels linking large reservoirs is a fundamental problem of rarefied
gas dynamics underpinning the development of microsystems. Although the rarefied gas

† Email addresses for correspondence: junli@kfupm.edu.sa, yonghao.zhang@strath.ac.uk
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FIGURE 1. Schematic of laminar flow separation (vortex formation) in a microchannel with a
rectangular bend.

flow in a straight microchannel has been extensively investigated (Sharipov & Seleznev
1998; Sazhin 2009; Titarev 2012a,b; Varoutis, Day & Sharipov 2012), only a few
experimental (Lee, Wong & Zohar 2001; Varade et al. 2015) and numerical (Raju & Roy
2004; Wang & Li 2004; Agrawal, Djenidi & Agrawal 2009; Sharipov & Graur 2012; White
et al. 2013; Kulakarni, Shterev & Stefanov 2015; Rovenskaya 2016; Liu et al. 2018) studies
have been carried out for rarefied gas flows through a microchannel with bends, which are
often encountered in miniaturised devices. One of the typical phenomena in bent channels
is flow separation, which is important for many engineering applications and has been
studied extensively in the continuum limit (Bradshaw & Wong 1972). In the literature,
flow recirculation, vortex formation or secondary flow is also often used to describe flow
separation phenomena. However, much less attention has been paid to flow separation in
microsystems, as the Reynolds number Re is often small. Moreover, the Knudsen number
Kn, which is defined as the ratio between the mean free path of gas molecules and the
characteristic flow length, is not always small, resulting in a new mechanism for flow
separation which does not appear in macrosystems. For example, in an early work on gas
flow separation in a bent microchannel (Lee et al. 2001), the experimentally measured data
at a fixed Knudsen number at the channel exit (Kne = 0.06) showed that the mass flow rate
ratio between the bent and straight channels of the same length, i.e.

α = Gbent

Gstraight
(1.1)

is close to 0.8, when the pressure ratio

β = pe

pi
, (1.2)

between the exit and the inlet varies from 0.25 to 0.33. Moreover, the pressure gradients
around the concave and convex corners are nearly zero and positive, respectively,
indicating that the flow separation or vortex generation at both corners, as illustrated in
figure 1, may exist even at very low Reynolds numbers, i.e. Re ≤ 0.06. This critical value
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Rarefied flow separation in microchannel with bends 901 A26-3

of Reynolds number is three orders of magnitude smaller than the lowest Reynolds number
(approximately 100 to 300) in the continuum flow for the emergence of flow separation
(Maharudrayya, Jayanti & Deshpande 2004; Xiong & Chung 2008).

The pioneering experimental work of Lee et al. (2001) inspired the numerical
investigations to understand rarefied gas flow in bent microchannels, but many
contradictory results are reported, which are summarised in table 1. Flow separation at
the concave corner is, surprisingly, captured by Agrawal et al. (2009), White et al. (2013)
and Varade et al. (2015) at low Reynolds numbers using the lattice Boltzmann method,
the direct simulation Monte Carlo (DSMC) method (Bird 1994) and the Navier–Stokes
solver, respectively. Small recirculation at the bends can be deduced from the velocity
profiles obtained in the numerical simulation of the Navier–Stokes equations with the
first-order slip velocity boundary condition (Raju & Roy 2004). However, the others
explicitly confirmed that no trace of flow separation was found using the DSMC method
(Wang & Li 2004) and the discrete velocity method (DVM) of solving the linearised
kinetic equations (Sharipov & Graur 2012; Liu et al. 2018).

Table 1 further shows that the mass flow rate ratio α is reported in the literature in a
rather scattered fashion. Raju & Roy (2004) showed that α varies from 0.38 to 0.52 when
the pressure ratio β is increased and Kne is fixed around 0.06. The others reported that α
is very close to unity or slightly higher than unity in the slip flow regime. Also, it varies
differently with respect to the Knudsen number: Liu et al. (2018) reported that α decreases
monotonically when Kn increases; White et al. (2013) found the steep increase of α to
its maximum value at the inlet Knudsen number of Kni = 0.027, followed by a gradual
decrease; Agrawal et al. (2009) and Rovenskaya (2016) observed a steep increase of α to
its maximum value at Kne = 0.2 and 0.05, then remaining plateaued up to Kne = 0.5 and
0.1, respectively. This small flow rate enhancement in the bent channel compared with
the straight channel has been attributed to numerical uncertainty (Agrawal et al. 2009),
reduction of average shear stress (White et al. 2013; Rovenskaya 2016) or cross-section
expansion at the bends (Liu et al. 2018). As no vortex is found in the detailed flow structure
analysis, the case of flow rate ratio α less than unity is attributed to rarefaction effect rather
than flow separation (Wang & Li 2004). On the other hand, when the exit Knudsen number
is fixed at Kne ≈ 0.06, the mass flow rate ratio α increases considerably with the pressure
ratio β (Raju & Roy 2004), which contradicts the experimental observation of the constant
ratio (Lee et al. 2001).

It is the aim of the present work to elucidate the contradictory findings on flow
separation and flow rate enhancement due to bent channels through a thorough numerical
study covering a wide range of Knudsen numbers and Reynolds numbers. To ensure
computational accuracy, the kinetic equation is solved by the deterministic DVM with
very refined spatial resolution.

2. Problem statement and gas kinetic simulation

2.1. Statement of the problem
Consider the rarefied flow of argon gas through the straight and bent channels of the same
height h and axis length Lch = 5h connecting the two reservoirs of equal size, see figure 2.
The gas pressures in the upstream and downstream reservoirs are pi and pe, respectively.
The reservoir gas and wall temperatures are kept at T0 = 273 K. The resulting rarefied gas
flow is characterised by the pressure ratio β and the reference Knudsen number

Kn = λ

L0
, λ = μ0

p0

√
πkBT0

2m
, (2.1a,b)
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Reference Vortex Re Kn range α β

all maximum α

Lee et al. (2001) E ≤0.06 fixed 0.06e * 0.8 0.25 ∼ 0.33
Varade et al. (2015) Yes 0.27 ∼ 418.5 0.0003 ∼ 0.0385e 0.005 ∼ 0.02m 0.45 ∼ 0.95 N.A.
Raju & Roy (2004) E ≤0.04 fixed 0.0585e ** 0.38 ∼ 0.52 0.37 ∼ 0.75
Wang & Li (2004) No ≤15 fixed 0.062e N.A. N.A. 0.33 ∼ 0.5
Agrawal et al. (2009) Yes 2.14 ∼ 19.3 0.060 ∼ 1e 0.2 ∼ 0.5e 0.99 ∼ 1.01 0.33
Sharipov & Graur (2012) No N.A. 0.009 ∼ 88.6m *** 0.31 ∼ 1.18 ≈1
White et al. (2013) Yes 0.18 ∼ 27.9 0.011 ∼ 0.30i 0.027i 0.95 ∼ 1.02 0.33
Kulakarni et al. (2015) N.M. N.A. 0.089 ∼ 0.89m N.A. N.A. 0.33 ∼ 0.5
Rovenskaya (2016) N.M. 1.41 ∼ 73.77 0.01 ∼ 0.1e 0.05 ∼ 0.1e 0.94 ∼ 1.02 0.16 ∼ 0.48
Liu et al. (2018) No N.A. 0.00 ∼ 10m *** 0.62 ∼ 1.03 ≈1

TABLE 1. Contradictory reports in the literature about existence of vortex in microchannels and mass flow rate ratio α. Here, *: α is almost constant
with increasing pressure ratio β; **: α increases monotonically with pressure ratio β; ***: α decreases monotonically with increasing mean Knudsen
number Knm. Subscripts ‘i’, ‘e’ and ‘m’ in the Kn range indicate the inlet, exit and mean Knudsen number, respectively. Abbreviations ‘E’, ‘N.M.’
and ‘N.A.’ mean ‘expected’, ‘not mentioned’ and ‘not available’, respectively.

Downloaded from https://www.cambridge.org/core. University of Strathclyde, on 08 Sep 2020 at 08:17:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2020.585
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FIGURE 2. Pressure-driven gas flow from the left-hand reservoir to the right-hand reservoir
through (a) the straight channel and (b) the bent channel of the same height h and axis length
Lch = 5h. Note that only part of the reservoirs are illustrated here.

where μ0, λ, m and kB are the gas viscosity at temperature T0, the molecular mean
free path, the molecular mass and the Boltzmann constant, respectively. The channel
height and the inlet pressure are taken as the reference length L0 = h and the reference
pressure p0 = pi, respectively. As a result, our reference Knudsen number is the inlet
Knudsen number Kn = Kni. When the exit or mean Knudsen number (Kne or Knm)
is of interest, it can be calculated from the reference Knudsen number and pressure
ratio β, i.e. Kne = Kn/β or Knm = Kn(1 + β)/(2β), respectively. Alternatively, the gas
rarefaction can be characterised by the rarefaction parameter δ, which relates to Kn as
δ = √

πL0/2λ = √
π/2Kn.

The effect of pressure ratio can be reflected by the Reynolds number Re that is defined
as

Re = ρ0U0L0

μ0
, (2.2)

where U0 is the characteristic flow speed, e.g. the average speed in the channel and ρ0 =
mp0/(kBT0) is the reference density. The Mach number Ma relates to the Knudsen number
Kn and the Reynolds number Re through the von Kármán relation

Ma =
√

2
πγ

KnRe, (2.3)

where the specific heat ratio γ is taken to be 5/3 for monatomic gas.

2.2. The governing equation and boundary condition
The Boltzmann equation is the fundamental equation to describe the rarefied dynamics
of monatomic gas. However, due to the complexity of its collision operator, the kinetic
model (Shakhov 1968) is often used to simulate rarefied gas flows. Without an external
body force, the Shakhov model equation takes the following form:

∂f
∂t

+ c · ∇f = f S − f
τ

. (2.4)

Here f = f (x, c, t) is the velocity distribution function of gas molecules with molecular
velocity c = (cx , cy, cz) at position x = (x, y, z) and time t, and the reference distribution
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function f S reads

f S = n

(2πkBT/m)3/2
exp

(
− mξ 2

2kBT

) [
1 + (1 − Pr)

mξ · q
5n (kBT)2

(
mξ 2

kBT
− 5

)]
, (2.5)

where n and T are the gas number density and temperature, respectively, ξ = c − u is the
peculiar velocity, with u the macroscopic flow velocity and q = (m/2)

∫
ξξ 2f dc is the

heat flux. The Prandtl number Pr is set to be 2/3 for monatomic gas. Conservative flow
variables are calculated as W ≡ (n, nu, ne)T = ∫

(1, c, c2/2)Tf dc and the temperature is
determined from the specific total energy e = (u2 + 3kBT/m)/2.

The relaxation time τ in the Shakhov model (2.4) is related to the dynamic viscosity μ
and the local pressure p as τ = μ/p = μ/(nkBT). For gas molecules interacting through
the inverse power law potential, the dynamic viscosity μ depends on the temperature T as

μ = μ0

(
T
T0

)ω

, (2.6)

where ω is the viscosity index. Argon gas with m = 6.63 × 10−26 kg, μ0 = 2.117 × 10−5

Ns m−2 and ω = 0.81 is considered in this paper.
To simulate the rarefied gas flow, the gas–surface interaction should be specified, which

is modelled by the Maxwell diffuse–specular reflection, i.e.

f (c | c · N > 0) = αdns

(
m

2πkBT0

)3/2

exp
(

− mc2

2kBT0

)
+ (1 − αd) f [c − 2N(c · N)] , (0 ≤ αd ≤ 1), (2.7)

where N, ns, αd are the normal unit vector of the solid surface, the gas number density on
the solid surface and the accommodation coefficient, respectively. In the diffuse–specular
model, αd portion of incident particles are reflected diffusively, whereas the remaining
(1 − αd) portion of incident particles have a specular reflection. The diffuse boundary
condition αd = 1 at the solid surfaces is used in this study, except for the simulations
in § 3.2 where diffuse–specular reflection is used. The gas number density on the solid
surface is computed from the non-penetration condition, i.e. the number of gas molecules
reflected from the wall is equal to those molecules approaching the same wall

ns = −2
√

π

2kBT0/m

∫
c·N<0

c · N f dc. (2.8)

At the free surfaces of reservoirs, molecules entering the computational domain follow
the Maxwellian distribution with the local bulk velocity u, pressure and temperature
corresponding to each reservoir. The local velocity u at the free surfaces is extrapolated
from that of the interior neighbour grid points.

2.3. The numerical methods
We employ the reference length L0, temperature T0, pressure p0 and the most probable
molecular speed vm = √

2kBT0/m to normalise the following variables:

(
X̃, Ỹ

)
= (X, Y)

L0
, (ũ, ṽ) = (u, v)

vm
, T̃ = T

T0
, p̃ = p

p0
, ñ = n

p0/kBT0
, (2.9a–e)
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Rarefied flow separation in microchannel with bends 901 A26-7

where u and v are the velocity components of macroscopic velocity u along the coordinate
axes X and Y , respectively. Hereafter, the tildes on these dimensionless quantities are
omitted for simplicity.

The DVM is one of the most commonly used deterministic approaches to solving the
Boltzmann equation and its simplified models (Broadwell 1964; Yang & Huang 1995).
It projects the continuous molecular velocity space c into a set of discrete velocities
c(i) (i = 1, 2, . . . , Nc). As a result, the governing equation (2.4) is replaced by a system
of Nc independent equations. Here, we discretise this system in time by a time-implicit
Godunov-type scheme (Yang & Huang 1995; Titarev 2007)[

1
Δt(j)

+ c(i) · ∇ + 1
τ (j)

]
Δf (j) = RHS(j),

RHS(j) = 1
τ (j)

[
f (j)
eq − f (j)

] − c(i) · ∇f (j),

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

where Δf (j) = f (j+1) − f (j) needs to be determined at the time step Δt(j) and j is the time
step index. Here, RHS(j) is the explicit part, and the spatial derivative is approximated by
a third-order upwind scheme. This time-implicit scheme allows us to use a large time step
to accelerate steady-state solution. Specifically, the classical Courant–Friedrichs–Lewy
number of 106 is chosen in this study. A few efficient implicit methods for solving the
linearised Shakhov model have been developed by Titarev (2012a,b, 2013). The details of
the DVM algorithm used in this work can be found in Ho et al. (2019). In the following
simulations, the polar velocity grids of Nc = Ncp × Nϕ = 4 × 120 and 4 × 40 are chosen
for Kn > 0.1 and Kn ≤ 0.1, respectively. The number of discretised velocities in the
angular coordinate Nϕ is uniformly spaced on [0, 2π], whereas the number of discretised
velocities in the radial coordinate Ncp follows the half-range Gauss–Hermite abscissae.
The molecular velocity is cut off at 2.3 times the most probable molecular speed vm
with Ncp = 4. In the cases of small pressure ratio, i.e. β = 0.75, 0.5 and low Knudsen
number Kn ≤ 0.03, Ncp = 8 and the truncated molecular velocity of 3.7vm are used due
to relatively high Mach number. With these sets of the velocity grids, the numerical
uncertainty is of the order of 0.1 % when Ncp is doubled (note: the truncated molecular
velocity is also enlarged accordingly).

Different uniform spatial grids are used in DVM simulations based on the value of
Knudsen number, i.e. L10W4h160, L20W8h80 and L40W16h40 are used for Kn ≤ 0.1,
0.1 < Kn ≤ 1 and 1 < Kn, respectively. Here, for example, the spatial grid L10W4h160
denotes the reservoirs are of size of L = 10h, W = 4h and the reference length (i.e. the
channel height h) is resolved by 160 uniform-cells, see figure 2.

Our simulations start from the global equilibrium state. The convergence criterion for
the steady-state is checked every time step as follows:

E(t) =
∑ |u(t) − u(t − Δt)|∑ |u(t)| < 10−6. (2.11)

The reduced mass flow rate G, normalised by h2( pi − pe)/vmLch, reads

G = Lch

h
2p0

( pi − pe)

∫
nu dY = Lch

h
2p0

( pi − pe)
uavg. (2.12)

The average speed uavg = ∫
nu dY is calculated at two vertical cross-sections inside the

channel near the inlet and the exit to guarantee the mass conservation. The discrepancy of
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901 A26-8 M. T. Ho and others

uavg near the inlet and the exit is less than 0.01 %. To calculate the Reynolds number, the
characteristic flow speed U0 in (2.2) is determined by U0 = uavgvm.

In this study, DVM is used for solving the nonlinear Shakhov model, see (2.4) and
(2.5) for all the values of pressure ratio β, except for β = 0.99999. For β = 0.99999, the
DVM simulation converges very slowly and requires a very fine spatial grid at such low
Kn (Valougeorgis & Naris 2003; Wang et al. 2018). Therefore, the discontinuous Galerkin
method (DGM) and general synthetic iterative scheme, which enables the fast convergence
to the steady-state solution and retains asymptotic preserving natures of the Navier–Stokes
equations, is employed to solve the linearised Shakhov equation for the case of pressure
ratio β = 0.99999 (Su et al. 2019b, 2020b). The DVM and DGM solutions are compared
with each other and with the other available data, see appendix A.

3. Flow separation at bends

In this section, we numerically investigate the gas flow through the bent channel over a
wide range of Knudsen and Reynolds numbers. In particular, the role of velocity slip on
the flow separation (vortex formation) is evaluated.

3.1. Influence of Reynolds number and Knudsen number
In our simulations, the Knudsen number Kn and the pressure ratio β are chosen first, and
the Reynolds number Re is then obtained from the simulation results. The compressibility
of the gas tends to suppress vortices generation which has been observed in supersonic
flows, e.g. see Burggraf (1966). The compressibility effects may be insignificant as the
Mach number Ma calculated from the von Kármán relation (2.3) is up to 1.5 × 10−3,
1.5 × 10−2, 0.19 and 0.25 for all the considered cases of the pressure ratio β = 0.99999,
0.99, 0.75 and 0.5, respectively.

Figure 3 shows the streamlines and the pressure distribution inside the bent channel for
Kn = 0.01, 0.02 and 0.05 with the pressure ratio β = 0.99 and 0.5. With the fixed pressure
ratio β and increasing Kn, Re becomes smaller so that the vortices at the bends shrink or
even disappear. The strong influence of Re, i.e. the inertial effect from the mainstream, on
the vortex formation is well known for continuum flows; however, with the presence of
gas rarefaction effect in microflow, two unusual phenomena are observed in figure 3. First,
the Reynolds number alone cannot characterise the flow separation in a microchannel.
For example, from figures 3(c) and 3( f ) we see that in the slip flow regime the vortices
exist at Re = 0.68 but not at a larger Re of 4.72. Second, as shown in figures 3(c) and
3(b), the vortices near the concave and convex corners occur at Re as small as 0.68 and
40.65, respectively, while the corresponding critical Reynolds numbers (i.e. the smallest
Re where the vortex emerges) for air in the continuum flow regime, obtained from the
Navier–Stokes equations with a no-slip boundary condition (Maharudrayya et al. 2004),
are 200 and 100; on the other hand, for water flow in a microchannel no vortex is observed
experimentally when Re < 100 (Xiong & Chung 2008). To analyse these contradictory
observations, we need to look into the secondary flows at the bends.

To the best of authors’ knowledge, the concave vortex, which exists near the concave
corners, is closely related to the Moffatt eddies originally found by the Stokes stream
function for viscous fluid near deep sharp corners in Stokes flow (Moffatt 1964). Contrary
to the conventional vortex occurring at high Re, where the centrifugal force is balanced by
the pressure force, the Moffatt viscous vortex is both driven and damped by the viscous
force. By solving the stream function in the Stokes limit at the vicinity of a sharp corner,
Moffatt found that a sequence of vortices generally appears if the angle of the sharp corner
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FIGURE 3. The pressure field and streamlines of rarefied argon gas flow inside the bent
channel at different values of Kn and Re. Note: the rarefaction δ of 88.6, 44.3, 17.7 corresponds
to Kn = 0.01, 0.02, 0.05, respectively. (a) β = 0.99, Kn = 0.01, Re = 2.48; (b) β = 0.5, Kn =
0.01, Re = 40.65; (c) β = 0.99, Kn = 0.02, Re = 0.68; (d) β = 0.5, Kn = 0.02, Re = 17.80;
(e) β = 0.99, Kn = 0.05, Re = 0.13 and ( f ) β = 0.50, Kn = 0.05, Re = 4.72.

is smaller than the critical angle 146◦. In the hydrodynamic regime, Moffatt eddies have
been confirmed numerically by Biswas, Breuer & Durst (2004) in backward-facing step
flows, where the primary vortex has been observed in a wide range of Re from 10−4 to 102.
Interestingly, the vortex size is nearly constant when the Reynolds number increases up to
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FIGURE 4. Critical values of the Reynolds number for the emergence of (a) concave vortex
(enlarged view of the pressure field and streamlines near the first concave corner of the
upper wall) and (b) convex vortex. Note: the rarefaction δ of 88.6, 29.5 corresponds to
Kn = 0.01, 0.03, respectively. (a) Re = 0.32 × 10−3, Kn = 0.03, β = 0.99999 and (b) Re =
30.8, Kn = 0.01, β = 0.75.

unity, then becomes larger with a further increase of Re (up to 100). Also, the size ratio of
the primary vortex to the secondary vortex obtained by their Navier–Stokes simulations
for Re = 1 is in good agreement with the Stokes approximation in the Moffatt analysis
(16.28 for the right angle corner). This rapid reduction of the size of successive vortices
leads to enormous difficulty in capturing a sequence of vortices experimentally. In gas
microflow, the concave vortex was, surprisingly, observed in the numerical simulations
with Re of the order of unity (Agrawal et al. 2009; White et al. 2013). Without awareness
of Moffatt’s theory, the existence of a concave vortex at such low Re is either attributed
to gas rarefaction (Agrawal et al. 2009) or not acknowledged (Wang & Li 2004; Sharipov
& Graur 2012; Liu et al. 2018). We observe, for the first time, that the concave vortex in
gas microflows does exist in the limit as the Reynolds number approaches zero, which
agrees with Moffatt’s theory. From our simulations, the smallest Reynolds number for a
vortex to appear is found to be 0.32 × 10−3 for the case of pressure ratio β = 0.99999 and
Kn = 0.03, as shown in figure 4(a).

The convex vortex, which appears in the downstream side of convex bent corners, is
formed when the fluid streams cannot move closely along the sharp angle of the wall after
the convex corner due to their relatively high momentum. The flow separation emerges
from the convex corner point and extends beyond the vena contracta, i.e. the narrowest
region of the stream after a sudden contraction of the duct (see the schematic diagram in
figure 1). A similar effect is also observed in the slip flow through an orifice (Sharipov
2004; Ho & Graur 2014). This type of vortex was observed clearly from the experiments
of water flow through a microchannel with bends at Re ≥ 300 (Xiong & Chung 2008). To
the best of the authors’ knowledge, this is the first study that detects this type of vortex
for rarefied gas flow at a much smaller Reynolds number compared with continuum flow.
From our simulations, the smallest Reynolds number for the emergence of a convex vortex
is found to be 30.8 in the case of pressure ratio β = 0.75 and Kn = 0.01, in which a single
convex vortex occurs near the second rectangular bend as shown in figure 4(b).
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3.2. Influence of velocity slip
To understand the puzzling behaviour of concave and convex vortices for rarefied gas flows
at low Reynolds number, we analyse the influence of velocity slip at the channel surface,
which is one of the major rarefaction effects when Kn is small. Note that when the other
parameters are fixed, the smaller the accommodation coefficient αd is, the larger the slip
velocity will be (Loyalka 1968; Su et al. 2019a). Here, we change αd and keep both Kn and
β fixed to allow significant variation of slip velocity us at the wall while the mainstream
velocity is only slightly affected. For example, in the following two cases the Reynolds
numbers are changed by less than 5 % and 0.9 % when αd is varied from 1 to 0.6.

The influence of slip velocity on the flow field near the concave corner is shown in
figure 5, when Kn = 0.01 and β = 0.99. It can be seen from figures 5(a) and 5(b) that,
when αd decreases (i.e. the slip velocity increases), the size of the vortex shrinks and its
core centre moves towards the corner. Slip velocity profiles along the upper and lower
walls, as shown in figures 5(c) and 5(d), demonstrate that no slip exists in the region near
the concave corner (i.e. at d/h ≈ 2 of the upper wall and d/h ≈ 3 of the lower wall, where
d is the distance between the inlet of a microchannel and the considered point along the
corresponding wall) and this non-slip region increases with αd . This can be explained by
the fact that, when αd decreases, the induced larger slip velocity needs a longer distance
to reduce to zero at the concave corner. As a consequence, the wall surface with no-slip
flow becomes smaller and the Moffatt vortex is suppressed at a lower αd. A weak adverse
pressure gradient is also found at the concave corner region, see figures 5(e) and 5( f ).

The influence of slip velocity on the flow field at the convex corner is presented in
figure 6, when Kn = 0.01 and β = 0.5. In contrast to the concave vortex, the convex vortex
is larger and its core centre moves away from the corner point when αd decreases from 1 to
0.6, see figures 6(a) and 6(b). This can be explained by the fact that fluid streams, denoted
as fluid streams ‘A’ in figure 1, departing from the upstream wall of the corner cannot
follow a sharp rectangular turn and are separated from the downstream wall of the corner.
These separations create a fluid region between the downstream wall of the corner and the
separated streams ‘A’. As no fluid stream departing from the inlet can access this region,
a recirculation occurs, resulting in the vortex in this region. Fluid streams ‘A’, through
viscous force, drive the convex vortex. As the speed of fluid streams ‘A’ increases with
reduction of αd – see the slip velocity at the convex corner (d/h = 4 for the upper wall and
d/h = 1 for the lower wall) shown in figures 6(c) and 6(d) – the convex vortex becomes
larger. A larger vortex leads to a shortened vena contracta. When αd decreases, the slip
velocity of backward flow and separation length (from the corner point to the reattachment
point) increases. The sudden jump and drop of slip velocity can also be seen at the convex
corner, which is positively related to the abrupt drop of pressure profile along the wall
before the convex corner shown in figures 6(e) and 6( f ). An adverse pressure gradient
along the wall after the convex corner is consistent with the pressure field near the convex
corner as shown in figures 6(a) and 6(b). The adverse pressure gradient after the convex
corner is significantly stronger than that at the concave corner (d/h = 2 for the upper wall
and d/h = 3 for the lower wall), this can also be seen for the case shown in figure 5.

3.3. Explanation of separation in rarefied gas flows
From the above numerical simulations, we know that the slip velocity suppresses flow
separation at the concave corner and intensifies flow separation at the convex corner. This
finding can explain the two unusual observations of rarefied flow separation presented in
§ 3.1. First, the momentum of bulk fluid is much larger in the case shown in figure 3( f )
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FIGURE 5. Vortex, slip velocity and adverse pressure gradient at the concave corner when
Kn = 0.01, β = 0.99. (a and b) Enlarged view of the pressure field and streamlines near the
first concave corner (upper wall); (c and d) the slip velocity along the upper and lower walls;
(e and f ) the pressure along the upper and lower walls, and the channel axis. The distance d is
measured from the inlet of the microchannel along the upper wall, the lower wall or the channel
axis, so that the concave corner is positioned at d/h = 2 and 3 for the upper and lower walls,
respectively. The Reynolds numbers are 2.48 and 2.60 for αd = 1 and αd = 0.6, respectively.
(a) αd = 1, the first concave corner; (b) αd = 0.6, the first concave corner; (c) αd = 1, slip
velocity profile; (d) αd = 0.6, slip velocity profile; (e) αd = 1, pressure profile and ( f ) αd = 0.6,
pressure profile.
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FIGURE 6. Vortex, slip velocity and adverse pressure gradient at the convex corner when
Kn = 0.01, β = 0.5: (a and b) Enlarged view of the pressure field and streamlines near the
second convex corner (upper wall); (c and d) the slip velocity along the upper and lower
walls; (e and f ) the pressure along the upper wall, the lower wall, and the channel axis.
The convex corner is positioned at d/h = 4 and 1 for the upper and lower walls, respectively.
The Reynolds numbers are 40.65 and 41.01 for αd = 1 and αd = 0.6, respectively. (a) αd = 1, the
second convex corner; (b) αd = 0.6, the second convex corner; (c) αd = 1, slip velocity profile;
(d) αd = 0.6, slip velocity profile; (e) αd = 1, pressure profile and ( f ) αd = 0.6, pressure profile.
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FIGURE 7. Slip velocity near the first concave corner (the upper wall, d/h = 2) for the cases
shown in figures 3(c) and 3( f ). The distance d is measured along the upper wall, starting from
the inlet of the microchannel.

than that in figure 3(c), however, flow separation is not observed in figure 3( f ). This is
because the Moffatt vortex is suppressed by a significant increase of the slip velocity
at the concave corner for Kn = 0.05, see figure 7. As the size of the Moffatt vortex is
significantly reduced in rarefied flow, it is more difficult to capture in simulations and
experiments. This explains why the Moffatt vortex was not detected in some numerical
studies of rarefied gas flow in bent microchannels (Wang & Li 2004; Sharipov & Graur
2012; Liu et al. 2018), but was captured by others with much refined grids (Agrawal et al.
2009; White et al. 2013; Varade et al. 2015). Second, the velocity slip in gas rarefied flows
enhances the convex vortex leading to ‘early onset’ of flow separation in microsystems
(with respect to the Reynolds number) compared with the flow in macrosystems, in which
no-slip boundary condition is applied at the fluid–wall interface. The convex vortex in a
rarefied gas can be found at Reynolds numbers as small as 30.8, see figure 4(b).

The attenuation of vortices near a bend with increasing Kn at fixed pressure ratio β,
as shown in figure 3, can be interpreted by the reduction of Re, which is consistent with
the findings in the continuum flow (Agrawal et al. 2009; Varade et al. 2015). This reason
seems not sufficient in rarefied gas flow, especially for a concave vortex, which may occur
even when Re approaches zero, see figure 4(a). The underlying reason for the concave
vortex and the additional reason for the convex vortex are the change of flow velocity
due to the rarefaction effect characterised by the Knudsen number. From figure 8 we see
that the slip velocity is also affected by the Knudsen number: at the concave corner, it
increases with increasing Kn, while at the convex corner it decreases with increasing Kn.
As a consequence, in agreement with the role of velocity slip on vortex formation as
analysed in § 3.2, both types of vortices become smaller with increasing Kn at a fixed
pressure ratio. Here, the concave and convex vortices start to disappear when the Knudsen
number increases to 0.04 and 0.01, respectively.
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FIGURE 8. Influence of the Knudsen number on the slip velocity near (a) the first concave
corner (the upper wall, d/h = 2) for β = 0.99, (b) the second convex corner (the upper wall,
d/h = 4) for β = 0.5. The distance d is measured along the upper wall, starting from the inlet of
the microchannel.

The adverse pressure gradient along the channel walls, which can be conveniently
detected by pressure sensors (Lee et al. 2001; Varade et al. 2015), is usually used as
an indicator for flow separation at bends. From our numerical data, adverse pressure
gradients at both the concave and convex corners are reduced when the Knudsen number
(Reynolds number) increases (decreases). The adverse pressure gradient along the concave
wall exists in all the examined Re and Kn, while the adverse pressure gradient along
the convex wall can only be found when Kn ≤ 0.1, regardless of the pressure ratio β.
However, the existence of adverse pressure gradient along the wall does not guarantee
the flow separation as it may not lead to vortex generation. For example, although an
adverse pressure gradient does occur at both the concave and convex corners for the case
of pressure ratio β = 0.5 and Kn = 0.05 as shown in figure 3( f ), no flow separation is
found for this case.

4. Gain and loss of flow rate due to bend

Figure 9(a) summarises the ratio of reduced mass flow rate α = Gbent/Gstraight as a
function of Knudsen number at different pressure ratios β. In general, when the Knudsen
number is fixed, a higher flow rate ratio is achieved with a larger pressure ratio β. This
is because, with a fixed Kn, Re decreases with increasing β, which leads to a smaller
adverse pressure gradient and/or a weaker vortex near the bend. Therefore, the kinetic
energy loss becomes smaller. When the pressure ratio is fixed, the flow rate ratio reaches
a maximum value slightly higher than unity in the slip flow regime. This maximum value
increases and its location is shifted to smaller Kn when the pressure ratio β increases.
With further decrease of Kn from the maximum point of α, the flow rate ratio reduces
rapidly, and the smaller the pressure ratio, the steeper the reduction of mass flow rate.
As a consequence, for larger values of β, not only is the gain of flow rate due to the
bends more significant, but also occurs in a wider range of Kn, covering the continuum,
slip and early transitional flow regimes. The maximum gain of flow rate is 2.8 %, 4.6 %,
8.2 % and 9.6 % at Kn = 0.5, 0.4, 0.01 and 10−5 ∼ 2 × 10−4 with β = 0.5, 0.75, 0.99 and
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FIGURE 9. The ratio of reduced mass flow rate α = Gbent/Gstraight versus (a) the Knudsen
number, (b) the Reynolds number, at different pressure ratio β. (a) α versus Kn; (b) α versus Re.

0.99999, respectively. On the other hand, when the Knudsen number increases from the
point where α is maximum, the mass flow rate ratio rapidly reduces with increasing
Kn; also, the curves with different values of pressure ratio β tend to converge in
the free-molecular flow regime. The maximum loss of flow rate due to the bends is
approximately 27 % in the free-molecular flow regime.

It can also be seen in figure 9(b) that the maximum value of α occurs around Re = 3.5
for all β, where neither vortex nor significant adverse pressure gradients appear near the
convex corner (see figure 3). So friction energy loss at the convex corner is comparable
to that in a straight channel. By contrast, the friction energy loss at the concave corner is
reduced significantly due to the suppressed shear stress (see figures 5c and 5d, in which the
slip velocity is expected to be proportional to the shear stress according to Maxwell’s slip
velocity model), which is responsible for the flow rate gain in the channel with bends. The
large decrease of shear stress and slip velocity near the concave corner was also observed
in White et al. (2013) and Rovenskaya (2016) for the cases in which flow rate gain was
found. When Re increases, the kinetic energy loss increases rapidly due to the development
of adverse pressure gradient and vortices at both the convex and concave corners, so the
reduction in friction energy loss cannot eventually compensate this kinetic energy loss,
leading to a reduced flow rate ratio in comparison with a straight channel.

On the other hand, Re decreases with increasing Kn when β is fixed. A larger Kn leads
to a more significant portion of flow rate contributed by velocity slip at the walls (Gu &
Emerson 2009). However, unlike the straight channel, the slip in a bent microchannel is
not always in the same direction as the mainstream, which may disturb and even weaken
the main flow stream, thus resulting in a steep decline of flow rate ratio in flow with a large
Kn.

Therefore, as shown in figure 9, the mass flow rate ratio strongly depends on both the
Knudsen and Reynolds numbers. This can explain why the scattered values of α are found
in the literature, see the summary in table 1, where a wide range of Kn and Re are covered.

5. Conclusions

In summary, we have simulated the rarefied gas flow through a microchannel with
double rectangular bends connecting two large reservoirs over a wide range of Knudsen
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numbers (from 10−4 to 10) and Reynolds numbers (from 10−7 to 103) and have found two
types of flow separation near the concave and convex corners of the bends. The concave
vortex, which is attributed to the Moffatt eddies, is found to shrink with the increase of the
Knudsen number and slip velocity. This means that, compared with the continuum flow
described by the Navier–Stokes equations with the no-slip velocity boundary condition,
‘late onset’ in terms of Re for the concave separation occurs in rarefied flow. When the
Reynolds number is less than unity, the size of the Moffatt vortices is approximately 10 %
of the channel height or less, so it is much more difficult to detect the Moffatt vortices in
microsystems compared with macrosystems. In the literature, the concave vortex is only
captured in rarefied gas flow at Reynolds number of the order of unity with a refined spatial
grid (Agrawal et al. 2009; White et al. 2013; Varade et al. 2015). In this study, the concave
vortex is found at Re as small as 0.32 × 10−3 due to the use of very refined spatial grids.
Convex separation, which is attributed to the rapid turn of stream with large momentum
passing through the convex corner, is found to be enhanced by slip velocity, resulting in
‘early onset’ of convex separation. This explains why the convex separation can occur at a
much smaller critical Reynolds number (30.8 in the present case) in a rarefied flow.

Although adverse pressure gradients are respectively found at the convex and concave
corners for Kn ≤ 0.1 and all the examined Kn, they do not always indicate flow separation,
which is different from the continuum flow because the flow is also affected by rarefaction.
As the slip velocity near the concave/convex corner increases/decreases with the increase
of Kn, both types of vortices are suppressed by increasing Kn. The concave and convex
vortices are found to disappear when the Knudsen number is beyond 0.04 and 0.01,
respectively. Compared with the straight channel of the same length, the bent channel
may yield higher mass flow rate in the early transitional regime than in the continuum
regime, due to a significant reduction of friction loss on the concave walls.

Scattered values of mass flow rate ratio reported in the literature can be explained by
the following two factors. First, the mass flow rate ratio itself depends strongly on both Kn
and Re. Second, the formation of secondary flow near a bend in a rarefied flow is largely
affected by the slip velocity on the wall, so an appropriate model and fine spatial grids
should be used to resolve the Knudsen layer at the wall surface in order to evaluate the
performance of microchannel flows.
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Appendix A. Numerical validation

Convergence tests on molecular velocity grids and spatial grids used in this study have
been performed to ensure that the change in mass flow rate is within 1 % when the number
of grid points is doubled.
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FIGURE 10. The reduced mass flow rate obtained by the DVM, DGM and direct simulation
Bhatnagar–Gross–Krook (DSBGK) simulations: (a) straight channel, compared with the
numerical data (Sharipov & Seleznev 1998; Titarev 2012b) and the analytical solution in the
free-molecular flow regime using the Berman equation (A 1); (b) bent channel, cross-validation
between the two numerical methods.

Figure 10(a) shows the dependence of reduced mass flow rate Gstraight on Kn for the
straight channel. The reduced mass flow rate Gstraight reduces rapidly with increasing Kn
in the slip-flow regime, then gradually decreases with increasing Kn in the transition-flow
regime and finally reaches a plateau in the free molecular regime. The analytical solution
for the straight channel of finite length in the free-molecular regime, i.e. Kn = ∞, is
obtained by Berman (1966)

Gstraight (Kn → ∞) = 1√
π

Qlch,

Q = 0.5
(

1 +
√

1 + l2
ch − lch

)
− 1.5

[
lch − ln

(
lch +

√
1 + l2

ch

)]2

l3
ch + 3l2

ch + 4 − (
l2
ch + 4

) √
1 + l2

ch

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 1)

where Q and lch = Lch/h are the transmission probability and dimensionless length of the
channel, respectively.

The DGM and DVM data are almost identical except for small deviations around
Kn = 1. Our numerical results are also in good agreement with the numerical data of
Sharipov & Seleznev (1998) and Titarev (2012b) for Kn ≥ 0.5. At lower Kn, our numerical
data are in very good agreement with Titarev’s data and considerably higher than Sharipov
and Seleznev’s results. This can be attributed to the insufficient grid resolution used more
than 20 years ago in Sharipov and Seleznev’s work. Relative fine grid resolution was
used in Titarev’s work and our Gstraight of the grid L20W8d80 being higher than that of
the grid L20W8d40. It is noted that the linearised Bhatnagar–Gross–Krook model and
linearised Shakhov model were used in Sharipov and Seleznev’s work and Titarev’s work,
respectively. In the present work, we solve both the linearised and nonlinear Shakhov
models. The DGM and DVM results are further compared with results obtained by the
DSBGK method (Li 2011; Ho et al. 2019; Li 2020). The DSBGK simulations use the
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grid L20W16h20 for Kn ≥ 1 and the grid L10W8h40 for Kn < 1 as the mass flow rate for
cases of relatively small pressure drop is of interest. Very good agreement can be observed
between the three numerical methods.

Figure 10(b) shows the reduced mass flow rate Gbent as a function of Kn for the bent
channel with pressure ratio β = 0.99 and β = 0.99999. Our DGM, DVM and DSBGK
data are in very good agreement. The interested reader is referred to Ho et al. (2019)
and Su et al. (2020a) for more information about the computational performance of our
methods.
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