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ABSTRACT
The high-order hybridisable discontinuous Galerkin (HDG) method is used to find steady-state solu-
tion of gas kinetic equations on two-dimensional geometry. The velocity distribution function and
its traces are approximated in piecewise polynomial space on triangular mesh and mesh skeleton,
respectively. By employing a numerical flux derived from the upwind scheme and imposing its con-
tinuity on mesh skeleton, the global system for unknown traces is obtained with fewer coupled
degrees of freedom, compared to the original DG method. The solutions of model equation for the
Poiseuille flow through square channel show the higher order solver is faster than the lower order
one. Moreover, the HDG scheme is more efficient than the original DG method when the degree of
approximating polynomial is larger than 2. Finally, the developed scheme is extended to solve the
Boltzmann equationwith full collision operator, which can produce accurate results for shear-driven
and thermally induced flows.
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1. Introduction

Gas flow widely encountered in high-altitude aerody-
namics, vacuum technology, shale gas extraction and
micro-electro-mechanical system (MEMS) is often
beyond the continuum flow regime, where the evolu-
tion of macroscopic flow properties, such as density,
bulk velocity and temperature, is no longer governed
by the conventional Navier–Stokes (NS) equations. To
predict such rarefied gas flows, microscopic descrip-
tion for the motion of gas molecules is necessary. In
gas kinetic theory, the system state is described by the
velocity distribution function (VDF) f. It is a function
of time t, position x and molecular velocity v, and is
defined such that f dxdv is the number of gasmolecules
in the phase-space (physical space and velocity space)
volume dxdv. The macroscopic flow properties are
derived via velocity moments of VDF. The evolution
of f is governed by the Boltzmann equation (Chapman
and Cowling 1970)

∂f
∂t

+ v · ∂f
∂x

+ a · ∂f
∂v

= C,

C =
∫∫

B · (
f ′∗f

′ − f∗f
)
d�dv∗ (1)
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where a is the external force exerting on a volume of
unit mass of gas molecules and C is the collision oper-
ator that describes change in VDF due to binary col-
lisions. Nomenclature for other arguments is referred
to Wu et al. (2013). The multidimensional nature (i.e.
six dimensions in the phase space and one dimen-
sion in the temporal space) of the Boltzmann equation
poses a real challenge to the numerical solution. Two
categories of numerical approaches have been devel-
oped. One is the stochastic method that uses simulat-
ing particles to mimic the molecular behaviour and
the other is the deterministic method that relies on
the discretisation of governing equation over compu-
tational grid (Dimarco and Pareschi 2014). The deter-
ministic approaches are based on the discrete velocity
model, which uses a set of Mv discrete vj to discretise
the molecular velocity space, resulting in a system of
equations evaluated at each vj

∂f j

∂t
+ vj · ∂f

j

∂x
+ a ·

(
∂f
∂v

)
j
= Cj, j = 1, . . . ,Mv,

(2)
where f j(t, x) = f (t, x, vj). Then, the equations that
are still continuous in the physical space and time
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are solved by computational fluid dynamic (CFD)
technologies. Usually, a large number, e.g. several ten
thousands, of discrete velocities (discrete equations)
are required to accurately capture the variation ofVDF.
This makes the computational cost immediately pro-
hibitive for realistic problems. Thus, the high-order
CFD method is critical to reducing the number of
degree of freedom (DoF).

One of the promising methods for this purpose is
the discontinuous Galerkin (DG) method, which was
first introduced for the neutron transport equation
(Reed and Hill 1973). After combing an explicit
Runge–Kutta (RK) timemarching scheme, themethod
has great success in solving convection-dominated
problems (Cockburn and Shu 2001). In recent years,
the explicit DG method has been applied to solve
the gas kinetic equations (Gobbert, Webster, and
Cale 2007; Evans, Morgan, and Hassan 2011; Kitzler
and Schöberl 2015). It was shown that the second-
order DG method is 15 times more efficient than
the second-order finite volume scheme in solving
the kinetic model equations (Su, Alexeenko, and
Cai 2015). Another attractive feature is that DG can
naturally obtain fluxes at the boundaries with the
same high-order accuracy as in the interior of the
domain (Mieussens 2014). This is particularly impor-
tant for the solution of flow in micro-systems, where
the surface-to-volume ratio is significantly magnified.

Despite the above advantages, it was shown that
higher order RKDG scheme is not superior to lower
order one, e.g. the third-order scheme is about 4
times slower than the second-order one to obtain
solutions with the same order of accuracy for rar-
efied Couette flow (Su, Alexeenko, and Cai 2015). It
is mainly due to the two facts for the explicit high-
order scheme: (1) number ofDoF rapidly increases; (2)
time step restricted by the Courant–Friedrichs–Lewy
(CFL) condition becomes extremely small (Kubatko,
Dawson, and Westerink 2008); thus the number of
iteration becomes larger in finding steady-state solu-
tion. Although implicit scheme could be used to
relax the CFL restriction, the classical DG meth-
ods are computationally expensive for implicit gas
kinetic solvers, since the number of globally coupled
DoF is significantly large. The hybridisable discon-
tinuous Galerkin (HDG) method was proposed to
overcome this disadvantage (Cockburn, Gopalakrish-
nan, and Lazarov 2009). By producing a final sys-
tem in terms of DoF in approximating the traces

of field variables, HDG could significantly reduce
the number of global unknowns, since the traces
are defined on cell interfaces and single-valued. The
majority of HDG applications in fluid dynamics
to date includes convection-diffusion flow (Cock-
burn, Gopalakrishnan, and Lazarov 2009), Stokes flow
(Nguyen, Peraire, and Cockburn 2010), wave prop-
agation problem (Giorgiani, Fernández-Méndez, and
Huerta 2013) and incompressible/compressible NS
flows (Peraire, Nguyen, and Cockburn 2010). In this
paper, we present an HDG scheme that is designed for
the gas kinetic equation for the first time.

2. HDG formulation

We present the HDG formulation to the linearised
BGK model equation (Bhatnagar, Gross, and Krook
1954).When the flow velocity and the external acceler-
ation are sufficiently small, we can linearise VDF about
the global equilibrium state feq = exp(−|v|2)/π3/2 as
f = feq(1 + h), where h is the perturbed VDF. Then,
interpreting f by h in Equation (1) and neglecting the
nonlinear terms, we have the following equations for
hj (Cercignani 1988)

vj · ∂h
j

∂x
− 2a · vj =

√
π

2Kn
(Lj − hj

)
,

Lj = � + 2u · vj + τ

(
|vj|2 − 3

2

)
, (3)

where � is the perturbed density, u is the bulk veloc-
ity and τ is the perturbed temperature. Lj is the
linearised equilibrium distribution. Kn is the Knud-
sen number related to the characteristic flow dimen-
sion H and the gas properties (pressure p0, temper-
ature T0 and viscosity μ0) at reference condition as
Kn = μ0

√
πRT0/

√
2p0H, where R is the specific gas

constant. We have omitted the derivative with respect
to time in Equation (3) since we are only interested
in steady-state solutions. Macroscopic properties are
calculated through quadratures

� =
Mv∑
j=1

hjf jeq� j, u =
Mv∑
j=1

vjhjf jeq� j,

τ = 2
3

Mv∑
j=1

|vj|2hjf jeq� j − �, (4)

where � j is the weight of the quadrature rule. All
variables are given in a dimensionless form: x is



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 3

normalised by H; v and u are normalised by the most
probable molecular speed vm = √

2RT0; T is nor-
malised by T0; VDF is normalised by n0/v3m. Note
that Lj contains macroscopic variables. To decouple
the equations, Equations (3) are usually solved by the
following semi-implicit iterative scheme

√
πhj,(t+1)

2Kn
+ vj · ∂h

j,(t+1)

∂x
=

√
π

2Kn
Lj,(t) + 2a · vj,

(5)
where the superscripts (t) and (t + 1) represent two
consecutive iteration steps. The iteration is terminated
when the convergence to a steady solution is achieved.
For conciseness, we will omit the step index in the
remainder of the paper unless necessary.

2.1. Weak formulation

Let � ∈ R
2 be a two-dimensional domain with

boundary ∂� in the physical space, which is parti-
tioned into Mel disjoint regular triangles {�i : � =
∪Mel
i �i}. The boundaries of �i (denoting as ∂�i)

define a group of Mfc faces {	c : 	 = ∪Mel
i ∂�i =

∪Mfc
c 	c}. The HDG method provides an approximate

solution to hj on �i as well as an approximation to its
trace ĥj on 	c in some piecewise finite element spaces
V × W of the following forms

V = {ϕ : ϕ|�i ∈ Pk(�i), ∀�i ⊂ �},
W = {ψ : ψ |	c ∈ Pk(	c), ∀ 	c ⊂ 	}, (6)

where Pk(D) denotes the space of kth-order poly-
nomials on the domain D. Before describing the
HDG formulation, we first introduce a collection of
index mapping functions (Kirby, Sherwin, and Cock-
burn 2012) that relate the local edge of a triangle,
namely ∂�e

i to a global face 	c. Since the eth edge of
the triangle ∂�i is the cth face 	c, we set σ(i, e) = c
so that ∂�e

i = 	σ(i,e). Similarly, since the interior face
	c ∈ 	\∂� is the intersection of the two triangles,
namely left triangle�i− and right triangle�i+ , we set
η(c,+) = i+ and η(c,−) = i−, then we denote 	c =
∂�η(c,+) ∩ ∂�η(c,−). At the boundary face 	c ∈ ∂�,
say, only the right triangle is involved.

The HDG method solves a problem in two steps
(Cockburn, Gopalakrishnan, and Lazarov 2009). First,
a global problem is set up to determine the trace
ĥj on 	. Then, a local problem with ĥj as the
boundary condition on ∂�i is solved element-by-
element to obtain the solutions of hj. Introducing (·)

and 〈·〉 as (a, b)D = ∫
D⊂R2(a · b)dx1dx2 and 〈a, b〉D =∫

D⊂R1(a · b)d	, respectively, the weak formulation of
the local problem is

− (∇ϕ, vjhj)
�i

+
3∑

e=1
〈ϕ, F̂ · n〉∂�e

i

+
√
π

2Kn
(ϕ, hj)�i = (ϕ, sj)�i , for all ϕ ∈ V , (7)

where n is the outward unit normal vector and
sj = √

πLj/2Kn − 2a · vj. F̂ is the numerical flux, of
which the definition will be given in the following
section.

The global problem, used to determine ĥj, is
obtained by imposing the continuity of normal fluxes
at cell interfaces. The weak formulation is

〈ψ , F̂ · nη(c,+)〉	c + 〈ψ , F̂ · nη(c,−)〉	c = 0,

for all ψ ∈ W , (8)

where F̂ · nη(c,+) and F̂ · nη(c,−) denote the numeri-
cal fluxes calculated from the left and right triangles,
respectively. At the boundary faces, F̂ · nη(c,−) should
be replaced by Ĝ · n, i.e. fluxes flowing into the compu-
tational domain. Eliminating the field unknowns hj in
Equation (8) with Equation (7), and assembling over
all the faces, the global problem becomes

K
jĤj = R

j, (9)

where Ĥj is the vector of DoF of ĥj on all the faces.
K

j is the global matrix of the linear system, which is
highly sparse, since only face unknowns that involve in
two adjacent triangles are coupled at each row. Com-
pared to the standard linear DG system, the trace sys-
tem is much smaller and sparser when k>1 (Huerta
et al. 2013). Once the values of ĥj are obtained,
an element-by-element reconstruction of hj is imple-
mented according to Equation (7).

Note that the basic HDG formulation is not lim-
ited to the linearised BGK equation. It is straight-
forward to be extended to the nonlinear Boltzmann
equation, where the unknowns in Equation (7) are
the full VDF f and its trace f̂ instead. Besides, the
terms

√
π(ϕ, h)�i/2Kn and (ϕ, s)�i are replaced by

(ϕ,
∫∫

Bf∗d�dv∗ · f )�i and (ϕ,
∫∫

Bf ′∗f ′d�dv∗)�i −
(ϕ, a · ∂f /∂v)�i respectively. The fivefold integral∫∫ ·d�dv∗ and the derivative ∂/∂v can be calculated
by the fast spectral method (Wu et al. 2013). The
detailed HDG formulations are listed in the Appendix.
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2.2. Numerical flux and implementation of
boundary condition

In this paper, we define the flux as (take the linearised
BGK equation as an example)

F̂j · n = vj · nĥj + |vj · n|
(
hj − ĥj

)
. (10)

If inserting the expression into continuity Equation (8)
at interior faces, we immediately obtain 〈ψ , ĥj〉 =
1
2〈ψ , h

j
η(c,+) + hjη(c,−)〉. That is, the trace ĥj at the inte-

rior face is equal (in a weak sense) to the average of
hjη(c,+) and h

j
η(c,−), which are the field unknowns eval-

uated at the interface from the left and right triangles,
respectively. Then we have an equivalent expression
for F̂ · n:

F̂ · nη(c,±) =
{
vj · nη(c,±)hjη(c,±), vj · nη(c,±) ≥ 0,
vj · nη(c,±)hjη(c,∓), vj · nη(c,±) < 0,

(11)
which means, definition (10) can recover the first-
order upwind principle. To be consistent with the
evaluation of fluxes at interior faces, we calcu-
late the boundary flux as Ĝ · n = vj · nĥj + |vj · n|
(gj − ĥj), where gj is the boundary value of hj and
n is the outward unit normal vector at the boundary
pointing into the flow field.

3. Results and discussions

For verification, we first consider the steady gas
flow along a channel of a square cross-section in the
x1 − x2 plane, subject to a small constant accelera-
tion a3 = 0.5 in the x3 direction, where (x1, x2, x3)
are the Cartesian coordinates in the physical space.
It is assumed that the channel length is significantly
larger than the dimension of its cross-section, thus
the end effect can be neglected and the flow field
only varies in the x1 and x2 directions. The HDG
method of k up to 4 is applied to the linearised BGK
equation. It is assumed that gasmolecules undergo dif-
fuse reflection on the surface and perturbedVDF at the
boundary is always zero for this problem. The conver-
gence criterion for iteration (5) is that the increment
in flow velocity between two successive iteration steps
| ∫ u(t+1)

3 − u(t)3 d�|/| ∫ u(t)3 d�| is less than 10−5. We
call the routines in IntelMathKernel Library (MKL) to
invert a matrix, and the Intel MKL PARDISO (Schenk
and Gärtner 2004) package to solve the global linear

system. The test is done in double precision on a sin-
gle Intel Xeon-E5-2680 processor. The velocity grid is
fixed with 24 non-uniform points distributing within a
truncation of [−4, 4] in each direction (Su et al. 2017).
Further refinement of the velocity grid would only
improve the solutions by a magnitude no more than
0.5%. The flow is resolved on a domain of� = [0, 1] ×
[0, 1], which is partitioned with uniform triangles, as
shown in Figure 1(a). The typical flow velocity con-
tours obtained by the HDG with k = 4 at Kn = 0.018,
0.089 and 0.89 are shown in Figure 1(b–d), respec-
tively. The numbers of triangles in these cases are 50, 32
and 18, respectively. The maximum velocity emerges
in the centre of the flow field. As Knudsen number
(degree of rarefaction) increases, the maximum veloc-
ity reduces while the slip velocity in the vicinity of solid
surfaces increases.

To investigate the performance of the proposed
scheme, the L1 error of the dimensionless mass flow
rate (MFR, M = ∫

u3d�), the number of iterative
steps and the CPU time are listed in Table 1, for
various numbers of triangles and degrees of approxi-
mation polynomials. The solutions from the discrete
unified gas kinetic scheme, which have been verified
for a wide range of rarefactions (Wang et al. 2018),
are used as a reference for error estimation. Note that,
in some cases, the error does not reduce monotoni-
cally with an increasing number of triangles. This is
due to the fact that the reference data are also numer-
ical. As expected, on the same spatial grid, the HDG
solutions of higher order accuracy are obtained using
higher order approximating polynomials. Thereby, to
achieve the same order of accuracy, the solvers with
higher order polynomials require fewer triangles. On
the other hand, for each rarefaction level, the solvers
with different degrees of polynomials require almost
the same number of iterations to obtain steady-state
solutions. Since fewer triangles are needed, the higher
the order of the solver, the less is the CPU time. For
instance, at Kn = 0.018, the CPU time to obtain solu-
tion of∼ 0.7% error for k = 4 is about 40% and 14% of
that for the solvers with k = 3 and k = 2, respectively.
It is also interesting to compare the performances of
the HDG and the original DG methods. The compar-
ison is for the flow at Kn = 0.089. In the DG scheme,
the same semi-implicit iterative scheme is applied.
Unlike HDG, it doesn’t resolve ĥj. Instead, a global lin-
ear system is directly built up for all the DoF of field
variables hj. The numerical flux is modelled through
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Figure 1. HDG solution (k = 4) of Poiseuille flow along a channel of square cross-section. (a) mesh, (b) Kn = 0.018, (c) u3 at Kn = 0.089
and (d) u3 at Kn = 0.89.

Table 1. Poiseuille flow along a channel with square cross-section solved by the HDG.

Kn = 0.018 Kn = 0.089 Kn = 0.89

k Mel L1 error Itr tc (s) L1 error Itr tc (s) L1 error Itr tc (s)

1 8 3.15 × 10−1 1283 111.6 9.92 × 10−2 131 10.8 1.05 × 10−2 15 1.3
18 1.49 × 10−1 1468 284.5 4.28 × 10−2 137 24.6 4.18 × 10−3 15 2.6
32 8.34 × 10−2 1539 529.4 2.32 × 10−2 139 45.0 2.20 × 10−3 15 4.6
50 5.26 × 10−2 1570 852.0 1.46 × 10−2 140 70.8 1.37 × 10−3 15 9.3

2 8 2.46 × 10−2 1595 214.3 6.62 × 10−3 141 18.0 4.04 × 10−4 15 1.9
18 9.99 × 10−3 1612 498.4 3.65 × 10−3 141 39.8 3.98 × 10−4 15 4.2
32 7.16 × 10−3 1615 887.0 2.93 × 10−3 141 71.5 3.65 × 10−4 15 8.0
50 6.29 × 10−3 1615 1380.8 2.64 × 10−3 141 112.5 3.47 × 10−4 15 12.2

3 8 6.54 × 10−3 1615 305.5 2.84 × 10−3 141 24.2 3.71 × 10−4 15 3.6
18 5.78 × 10−3 1615 696.3 2.50 × 10−3 141 55.6 3.43 × 10−4 15 9.2
32 5.59 × 10−3 1615 1248.1 2.39 × 10−3 141 97.8 3.29 × 10−4 15 10.6
50 6.75 × 10−3 1615 1939.9 2.33 × 10−3 141 160.7 3.24 × 10−4 15 17.5

4 2 6.75 × 10−3 1615 122.7 2.77 × 10−3 141 10.0 6.90 × 10−5 15 1.1
8 5.67 × 10−3 1615 490.0 2.44 × 10−3 141 37.7 3.33 × 10−4 15 4.0
18 5.48 × 10−3 1615 1125.0 2.33 × 10−3 141 89.0 3.24 × 10−4 15 9.4
32 5.37 × 10−3 1616 2008.3 2.29 × 10−3 141 152.4 3.20 × 10−4 15 18.2

Note: Itr denotes the number of iteration steps to satisfy the residual less than 10−5, and tc is the CPU time.

the upwind scheme, see Equation (11). The number of
DoF Ndof , the L1 error in MFR, the number of itera-
tive steps, and the CPU time are listed in Table 2 for
both approaches. It shows that HDG and DG with the
same order approximating polynomial yield the same
solution (MFRs have at least 7 same significant digits)

on the same mesh and consume the same number
of iterative steps. For HDG, the numbers of globally
coupled DoF is Ndof = MvMfc(k + 1), while for DG,
Ndof = MvMel(k + 1)(k + 2)/2. Here, Mfc is around
1.7 times ofMel. It is found thatNdof inHDG is smaller
than the one in DG when k ≥ 2. The higher order and

Table 2. Comparison of the implicit HDG and DG.

HDG DG

k Mel Ndof/Mv L1 error Itr tc (s) Ndof/Mv L1 error Itr tc (s)

1 8 32 9.92 × 10−2 131 10.8 24 9.92 × 10−2 131 4.9
32 112 2.32 × 10−2 139 45.0 96 2.32 × 10−2 139 21.4
72 240 1.02 × 10−2 141 160.0 216 1.02 × 10−2 141 54.5
128 416 6.22 × 10−3 141 180.2 384 6.22 × 10−3 141 116.6

2 8 48 6.62 × 10−3 141 18.0 48 6.62 × 10−3 141 11.6
32 168 2.93 × 10−3 141 71.5 192 2.93 × 10−3 141 52.5
72 360 2.51 × 10−3 141 169.7 432 2.51 × 10−3 141 140.3
128 624 2.39 × 10−3 141 316.1 768 2.39 × 10−3 141 276.6

3 8 64 2.84 × 10−3 141 24.2 80 2.84 × 10−3 141 23.2
32 224 2.39 × 10−3 141 97.8 320 2.39 × 10−3 141 110.2
72 480 2.30 × 10−3 141 240.9 720 2.30 × 10−3 141 284.5
128 832 2.28 × 10−3 141 465.8 1280 2.28 × 10−3 141 523.5

4 8 80 2.44 × 10−3 141 37.7 120 2.44 × 10−3 141 44.0
32 280 2.29 × 10−3 141 152.4 480 2.29 × 10−3 141 216.1
72 600 2.27 × 10−3 141 381.2 1080 2.27 × 10−3 141 545.0
128 1040 2.26 × 10−3 141 735.1 1920 2.26 × 10−3 141 893.8

Notes: Itr denotes the number of iteration steps to satisfy the residual less than 10−5, Ndof denotes the number of globally coupled DoF, and tc is the CPU time.
Note that Itr and L1 in both methods are exactly the same.
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Figure 2. Examples of HDG solutions to the nonlinear Boltzmann equation. (a) Cavity flow driven by top lid with U = 0.148 at Kn = 1.
(b) Configuration for flow induced by temperature inhomogeneity. (c) Thermal flow induced by temperature inhomogeneity at Kn = 0.5.

more triangles, themore significant this difference will
be. As a consequence, the HDGmethod cost less CPU
time than the DG method when k>2. For example,
HDG with k = 4 on 128 triangles can save 30% CPU
time, compared to the original DG method. Note that
Ndof of HDG with k = 2 is smaller than that of DG.
However, it is not more efficient, since extra effort is
required to recover field solution from trace solution
in the HDG scheme.

Finally, we show the solutions of HDG to the non-
linear Boltzmann equation for the square cavity flow
driven by its top lid of horizontal velocity U = 0.148
at Kn = 1 and thermal flow induced by non-uniform
temperature field between two coaxial elliptic cylin-
ders at Kn = 0.5. The temperature contours from
HDG (background) and the direct simulation Monte
Carlo (DSMC) method (dashed lines) (John, Gu, and
Emerson 2010), as well as the streamlines for cav-
ity flow are shown in Figure 2(a). The HDG solu-
tion, obtained with k = 4 on 72 uniform triangles
using 108 × 108 × 24 discrete velocities, agrees well
with the DSMC result. The geometry and solutions
of gas temperature and streamlines for the thermal
flow are illustrated in Figure 2(b–c), where the cold
cylinder is encompassed in a hot chamber. Only the
upper right quarter of the domain is shown due to
symmetry. Unlike the continuum flow where the bulk
velocity is zero, at rarefied conditions, temperature
inhomogeneity induces anisotropic momentum trans-
fer that produces gas flow with two vortexes in the
field. Temperature distribution from HDG (k = 2, on
142 unstructured triangles and 96 × 96 × 24 discrete
velocities) is closed to the DSMC results (Aoki, Sone,
andWaniguchi 1998), which shows the capacity of the
developed solver to deal withmore complex geometry.
The full diffuse wall condition is used in the two cases.

4. Conclusions

In summary, we have developed a high-order HDG
solver for the solution of gas kinetic equations on an
arbitrary triangular mesh. The velocity space is first
discretised using a quadrature rule. Then, the dis-
crete molecular VDFs and their traces are approxi-
mated in piecewise polynomial space of degree up to
4 on the spatial mesh and the mesh skeleton, respec-
tively. Based on the upwind scheme, a numerical flux
has been designed to evaluate the convection between
adjacent cells. By imposing the continuity of the nor-
mal flux, a global system is setup in terms of the
unknown traces only. Once the traces are resolved,
the VDFs are updated in an element-by-element fash-
ion. The boundary condition has been implemented
in the same framework as the calculation of flux
on interfaces. Finally, an implicit iterative scheme is
employed to obtain the steady-state solution. Perfor-
mance analysis shows that, to obtain the results with
the same order of accuracy, the scheme with higher
order approximating polynomial requires fewer trian-
gles in spatial discretisation. As a result, the compu-
tational time and memory consumption are reduced.
Furthermore, compared to the original DG scheme,
the HDG solver is more efficient when the degree of
approximating polynomial is larger than 2, since HDG
has a fewer number of globally coupled degrees of
freedom.
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Appendix

Unknowns are approximated by the nodal shape functions Nl

in each triangle�i or by N̂l on each face 	c: h
j
i = ∑Kel

l=1 N
l
iH

j
i,l,

ĥjc = ∑Kfc
l=1 N̂

l
cĤ

j
c,l, where Kel = (k + 1)(k + 2)/2 and Kfc =

k + 1 are the numbers ofDoF.DenoteHi,j as the vector of nodal
value of hj on each�i, Ĥi,j as the vector summing all the nodal
value of ĥj on the three faces of�i, and Ĥc,j as the vector of the
nodal value of ĥj on each 	c; the local and global problems can
be rewritten in the matrix form

Hi,j = [
Ai,j]−1 Si,j + [

Ai,j]−1 Âi,jĤi,j, (A1)

and

B̂c,jĤc,j = Bη(c,+),jHη(c,+),j + Bη(c,−),jHη(c,−),j, on 	\∂�,
B̂c,jĤc,j = Bη(c,+),jHη(c,+),j + Ŝc,j, on 	 ∩ ∂�, (A2)

where

Ai,j
ml =

√
π

2Kn

(
Nm
i ,N

l
i

)
�i

+
3∑

e=1
|vj · n|〈Nm

i ,N
l
i〉∂�e

i

−
(
vj · ∇Nm

i ,N
l
i

)
�i

,
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Âi,j,e
ml = (|vj · n| − vj · n) 〈Nm

i , N̂
l
σ(i,e)〉∂�e

i
, Si,jm = (

Nm
i , s

j)
�i

,

B̂c,j
ml = 〈N̂m

c , N̂
l
c〉	c ,Bη(c,±),jml = 1

2
〈N̂m

c ,N
l
η(c,±)〉	c ,

Ŝc,jm = 1
2
〈N̂m

c , g
j〉	c . (A3)

By eliminating the unknowns Hi,j with Equation (A1) and
assembling the equations of the global problem over all faces,
the global problem becomes K

jĤj = R
j with

K
j =

Mfc

A
c=1

{
B̂c,j − Bη(c,±),j

[
Aη(c,±),j

]−1
Âη(c,±),j

}
,

R
j =

Mfc

A
c=1

{
Bη(c,±),j

[
Aη(c,±),j

]−1
Sη(c,±),j + Ŝc,j

}
.

(A4)

Here, A is the conventional assembly operator.
When the nonlinear Boltzmann equation is solved, the

unknowns are the full VDF and its trace, which are

approximated as f ji = ∑Kel
l=1 N

l
iF

j
i,l, f̂ jc = ∑Kfc

l=1 N̂
l
cF̂

j
c,l with F

and F̂ being the corresponding nodal values. Then the terms√
π(Nm

i ,N
l
i)�i/2Kn and (Nm

i , s
j)�i in (A3) are replaced by

Kel∑
r=1

(
Nm
i ,N

r
i N

l
i

)
�i

∫∫
BFj∗,i,rd�dv∗ (A5)

and

Kel∑
r=1

Kel∑
l=1

(
Nm
i ,N

r
i N

l
i

)
�i

∫∫
BF′,j

∗,i,rF
′,j
i,ld�dv∗

− a ·
Kel∑
l=1

(
Nm
i ,N

l
i

)
�i

∂Fji,l
∂v

, (A6)

respectively. The integral
∫∫ ·d�dv∗ and derivative ∂/∂v are

calculated via the fast spectral method.
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