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A Stable Runge-Kutta Discontinuous Galerkin Solver for
Hypersonic Rarefied Gaseous Flows

Wei Su, Bijiao He and Guobiao Cai

School of Astronautics, Beihang University, Beijing 100191, China

Abstract. A stable high-order discontinuous Galerkin scheme which strictly preserves the positivity of the solution is
designed to solve the Boltzmann kinetic model equations. The stability is kept by the accuracy of the velocity discretization,
the conservation of the collision terms and a limiter. By requiring the time step smaller than the local mean collision time
and forcing positive values of velocity distributions on certain points, the limiter can preserve the positivity of the solutions
of the cell average velocity distributions. Verification is performed with a normal shock wave at Mach number of 2.05 and a
supersonic flow about a 2D cylinder at Mach number of 6.0.

Keywords: high-order discontinous Galerkin, positivity-preserving limiter, model equations, hypersonic flows
PACS: 02.60.Cb, 47.11.Fg, 47.45.-n

INTRODUCTION

Direct solvers of Boltzmann kinetic models have been widely developed due to their efficiency in resolving
near continuum flows, micro-scale flows and unsteady flows. In these approaches, the control equations are firstly
discretized in velocity space and cast into a system of partial differential equations which depend on physical
coordinates and time. Then the discrete equations are solved using CFD methods. The Runge-Kutta discontinuous
Galerkin (RKDG) method is a finite element formalism which is well suited for solutions of time-dependent hyperbolic
equations. Compared with other high-order methods such as finite difference method (FDM) and finite volume method
(FVM), it is more efficient in discretization with the same order of accuracy [1]. Other advantages of the RKDG
method include easy formulation on irregular meshes, straightforward implementation of boundary conditions, as well
as efficient parallel computation. In our previous work, we have developed a conservative RKDG scheme for 2D/2V
and 2D/3V Boltzmann kinetic equations with the Bhatnagar-Gross-Krook (BGK) and the ellipsoidal statistical BGK
(ES-BGK) models. It offers a conservative formulation of the collision relaxation term within high-order method on
arbitrary triangular meshes [2].

The RKDG method resolves solutions in piecewise finite element space combining with an explicit-multistep
Runge-Kutta time marching. Borrowing from FVM and FDM, the numerical fluxes are evaluated at edges of the
physical elements. The approach is stable under a certain CFL conditions when the solutions are smooth or have
weak discontinuities [3]. However, when strong discontinuities appear in the field, the approximate solutions exhibit
spurious oscillations, which make the iteration unstable. Several limiters have been designed to deal with the non-
physical oscillations, such as the TVB limiters [4], moment-based limiters [5], WENO limiters [6, 7] and recently the
bound-preserving limiters [8, 9].

In this work, we develop a stable RKDG solver for kinetic models to simulate the hypersonic rarefied gaseous flows.
Three essences determine the stability: the accuracy of the velocity discretization, the conservation of the collision
terms and a limiter. Based on the maximum-principle-satisfying scheme for scalar conservation laws [9], a positivity
limiter is designed for the Boltzmann kinetic models with source terms. The normal shock and hypersonic flow about
a 2D cylinder are used to validate the proposed solver.

KINETIC MODELS AND BASIC RKDG METHOD

The kinetic models solved here are the BGK and ES-BGK models written as

∂t f + c · ∇r f = ν( fE − f ), (1)
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where, f is the molecular velocity distribution function, while c and r are the velocity and spatial coordinates. ν is the
collision frequency and fE is a proper equilibrium distribution. In BGK model fE is the local Maxwell distribution,
and the one in ES-BGK model is a local anisotropic Gaussian.

A widely used approach to solve the kinetic model equations is the so-called discrete ordinate method. It uses a
numerical quadrature to approximate the exact integration over velocity space on a set of discrete velocities. Both
the Cartesian and spherical meshes have been developed for velocity discretization [2]. The Cartesian mesh adopts
the composite Newton-Cotes formulas and has finite limits which must be chosen carefully to ensure that the effects
of the tails of the distribution function are negligible, while the spherical one involves Gaussian-Laguerre quadrature
and has no bound limitation. The accuracy of the velocity discretization highly depends on the localization of the
distributions. For hypersonic flows, the appropriate velocity ranges could become quite wide and a large number of
discrete velocities are needed to meet the accuracy requirement. Therefore, the composite Newton-Cotes formulas
are more convenient. In this work, the first-order mid-point rule and the second-order Simpson’s rule are used. By
introducing N nodes c j with equal space, eq. (1) is cast into a system of partial differential equations

∂t f j + c j · ∇r f j = ν( f j
E
− f j ) (2)

with f j = f (t,c j ,r).
Then the RKDG method is used to solve the control system. The 2D computational domain is partitioned with

triangulations {Δi }Mi=1
and the approximate solutions are sought in the finite element space of piecewise polynomials.

The basis adopted here is a local orthogonal one [7] so that the first degree of freedom is the average value on the local
triangular cell Δi . In order to determine the approximate solution, the standard techniques of the finite element method
are applied to obtain the weak formulations, which are expressed as

d

dt
F j
l
=

1

wl

[
c j ·
∫
Δi

f j∇rϕldxdy −
∫
e

h j
eϕldΓ +

∫
Δi

ν
(

f j
E
− f j
)
ϕldxdy

]
, (3)

where, F j
l

is the degrees of freedom, ϕl is the basis functions, wl is the diagonal components of the mass matrix and

h j
e is the numerical fluxes. Since the values of f j at the edges of the triangles calculated from the adjacent cells are

not required equal, the fluxes borrowed from FVM and FDM are calculated based on Riemann solvers. We employ the
most simple upwind scheme and write it as

h j
e = he ( f j

e,int
, f j

e,ext,ne ) =
1

2

[
c j ·ne f j

e,int
+ c j ·ne f j

e,ext − |c j ·ne |
(

f j
e,ext − f j

e,int

)]
, (4)

where ne is the outward unit normal to the edge, f j
e,int

is the approximate solution obtained from the interior of the

triangle Δi , and f j
e,ext the one obtained from the exterior of Δi . It is easy to show that the upwind flux satisfies the

conservativity and consistency

h j
e ( f j

e,int
, f j

e,ext,ne ) = −h j
e ( f j

e,ext, f
j
e,int
,−ne ), h j

e ( f j
e , f

j
e ,ne ) = c j ·ne f j

e . (5)

Moreover, five different types of boundary conditions are incorporated to specify the boundary values of fext [2].
Finally, the resulting system of ordinary differential equations is discretized in time by a special class of explicit total

variation diminishing (TVD) Runge-Kutta schemes [10]. At each intermediate time step, the equilibrium distribution
fE is represented by consistently high-order polynomials. The corresponding degrees of freedom of fE are evaluated
such that the conservation of mass, momentum and energy are enforced. In this way, the same high-order discretization
of all terms of the Boltzmann kinetic equations is obtained, and the conservative nature with respect to the collision
term is preserved. The latter property is very essential to iterations convergence, especially for the low Kn number
flows [11].

POSITIVITY-PRESERVING LIMITER FOR HYPERSONIC FLOWS

The RKDG scheme is a shock-capture scheme, which may automatically capture the discontinuities in solutions
even if the initial conditions are smooth. It has been proven that this method is energy stable so that it could directly
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TABLE 1. The quadrature points and weights for the triangles.

ξ1 ξ2 ξ3 W/|Δi |

edge points
0 1

2 + vβ
1
2 − vβ 2

3w1ωβ
1
2 + vβ 0 1

2 − vβ 2
3w1ωβ

1
2 + vβ

1
2 − vβ 0 2

3w1ωβ

interior points

1
2 + vβ

(
1
2 +u2

) (
1
2 − vβ

) (
1
2 −u2

) (
1
2 − vβ

)
2
3

(
1
2 − vβ

)
w2ωβ(

1
2 −u2

) (
1
2 − vβ

)
1
2 + vβ

(
1
2 +u2

) (
1
2 − vβ

)
2
3

(
1
2 − vβ

)
w2ωβ(

1
2 +u2

) (
1
2 − vβ

) (
1
2 −u2

) (
1
2 − vβ

)
1
2 + vβ

2
3

(
1
2 − vβ

)
w2ωβ

be used to solve control equations with smooth solutions or solutions with weak discontinuities [12]. However, for
solutions with strong shocks, RKDG scheme will generate spurious oscillations near discontinuities. Because of the
oscillations, the numerical solutions of the velocity distribution functions may become negative, which is either non-
physical or could lead to instability and non-convergence of iterations. Usually, some forms of limiters are utilized to
keep the scheme stable. Treated as post-processor of the approximate solutions, a limiter uses a new polynomial to
replace the old one which is deemed to contain oscillations or non-physical values. In order to obtain reasonable results,
the new polynomials are required to keep the accuracy and conservativity of the solutions. In [8, 9], limiters have been
developed to preserve the maximum principle for DG or FVM schemes solving two-dimensional scalar conservation
law on triangular meshes and to preserve positivity for DG schemes solving one-dimensional compressible Euler
equations involving the source term. Using the same methodology, we design a positivity-preserving limiter to solve
the Boltzmann kinetic model equations on arbitrary triangular meshes, independent of the discrete collision operator.

The Boltzmann kinetic model equations are scalar conservative laws with source terms. First of all, applying the
first-order Euler forward time discretization to the first weak formulations (Eq. (3)), i,e, the control equations for cell
averages f̄Δi , we obtain

f̄ n+1
Δi
= f̄ nΔi −

Δt
|Δi |

3∑
e=1

∫
e

he ( f ne,int, f
n
e,ext,ne )dΓ +Δtν( fE − f )

n

Δi
, (6)

here, the index n indicates the time steps and the discrete velocity index j has been omitted. For kth-order DG schemes,
the edge integral

∫
e
·dΓ should be approximated by the (k +1)-point Gaussian rule. Then, Eq. (6) becomes

f̄ n+1
Δi
= f̄ nΔi −

Δt
|Δi |

3∑
e=1

k+1∑
β=1

ωβhe ( f n, β
e,int
, f n, βe,ext,ne )se +Δtν( fE − f )

n

Δi
, (7)

where, ωβ is the quadrature weights of the Gauss rule on interval [− 1
2
, 1

2
] with

∑k+1
β=1ωβ = 1 and se is the length of the

edge e. In order to rewrite the right hand side of Eq. (7) as a monotone increasing function of some point values of f n

under a certain CFL condition, a special rule is introduced to discretize the triangular integral [9]. The rule combines
with 3-point Guass-Lobatto rule and (k +1)-point Gaussian rule, which is exact for a polynomial f (x,y) if its degree
is not larger than k. Giving the points and weights of Guass-Lobatto rule on interval [− 1

2
, 1

2
] as {uα ,wα ,α = 1,...,3}

and the ones of Gaussian rule as {vβ ,ωβ , β = 1,...,k +1}, the triangle quadrature points indicated by area coordinates
xδ (x,y) = (ξ1,ξ2,ξ3)δ and their relative weights Wδ are listed in Table 1. The quadrature points contain 3(k+1) points
on the triangle edges which are coincident with the ones of Gaussian quadrature rule, another 3(k + 1) points on the
interior of the triangle. Then the cell average values Q̄n

Δi
is expressed as

Q̄n
Δi
=

3∑
e=1

k+1∑
β=1

2

3
w1ωβQn, β

e,int
+

3(k+1)∑
γ=1

Qn
int,γ w̃γ , (8)

where Qn
int,γ

is the point values of the interior and w̃γ is their weights.
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Using the conservativity of the flux, the flux integral is decomposed as

3∑
e=1

he ( f n, β
e,int
, f n, βe,ext,ne )se = h( f n, β

1,int
, f n, β

1,ext
,n1)s1+ h( f n, β

2,int
, f n, β

2,ext
,n2)s2+ h( f n, β

3,int
, f n, β

3,ext
,n3)s3

= h( f n, β
1,int
, f n, β

1,ext
,n1)s1+ h( f n, β

1,int
, f n, β

2,int
,−n1)s1

+ h( f n, β
2,int
, f n, β

1,int
,n1)s1+ h( f n, β

2,int
, f n, β

2,ext
,n2)s2+ h( f n, β

2,int
, f n, β

3,int
,n3)s3

+ h( f n, β
3,int
, f n, β

2,int
,−n3)s3+ h( f n, β

3,int
, f n, β

3,ext
,n3)s3.

(9)

Then, substituting Eqs. (8) and (9) into Eq. (7), we have

f
n+1

Δi
=

k+1∑
β=1

2

3
w1ωβ

[
H1, β +H2, β +H3, β

]
+

3(k+1)∑
γ=1

w̃γ (1−Δtνint,γ ) f nint,γ

+Δt
3∑

e=1

k+1∑
β=1

2

3
w1ωβνe, β f Ee, β +Δt

3(k+1)∑
γ=1

w̃γνint,γ f Eint,γ ,

(10)

where, νe, β , νint,γ , f Ee, β and f E
int,γ are the point values of collision frequency and equilibrium distribution, and they are

all positive values due to the ways, through which they are calculated. The functions He, β are

H1, β = (1−Δtν1, β ) f n, β
1,int
− 3Δt

2w1 |Δi |
[
h( f n, β

1,int
, f n, β

1,ext
,n1)s1+ h( f n, β

1,int
, f n, β

2,int
,−n1)s1

]
,

H2, β = (1−Δtν2, β ) f n, β
2,int
− 3Δt

2w1 |Δi |
[
h( f n, β

2,int
, f n, β

1,int
,n1)s1+ h( f n, β

2,int
, f n, β

2,ext
,n2)s2+ h( f n, β

2,int
, f n, β

3,int
,n3)s3

]
,

H3, β = (1−Δtν3, β ) f n, β
3,int
− 3Δt

2w1 |Δi |
[
h( f n, β

3,int
, f n, β

2,int
,−n3)s3+ h( f n, β

3,int
, f n, β

3,ext
,n3)s3

]
.

(11)

Taking H2, β as an example to discuss its property, the function is rewritten as

H2, β =

⎛
⎜⎝1−Δtν2, β − 3Δt

2w1 |Δi | ·
∑3

e=1 |c ·ne |se
2

⎞
⎟⎠ f n, β

2,int
− 3Δt

4w1 |Δi |
3∑

e=1

se (c ·ne − |c ·ne |) f n, β
e,int
. (12)

Therefore, under the following condition,

1−Δtν2, β − 3Δt
2w1 |Δi | ·

∑3
e=1 |c ·ne |se

2
≥ 0, (13)

the function H2, β is a monotone increasing function of f n, β
2,int

, f n, β
1,int

, f n, β
2,ext

and f n, β
3,int

. Similarly, under the conditions

1−Δtν1, β − 3Δt
2w1 |Δi | · |c ·n1 |s1 ≥ 0, 1−Δtν3, β − 3Δt

2w1 |Δi | · |c ·n3 |s3 ≥ 0, (14)

the functions H1, β and H3, β are also monotone increasing functions of the point values.
Finally, writing the right-hand side of Eq. (10) as a function of all the point values of f n , this function is monotone

increasing with respect to each argument under Eq. (13) and Eq. (14) plus (1−Δtνint,γ ) ≥ 0. Therefore, if all the point
values f n (xδ ) at time step tn are non-negative, the average value f̄ n+1

Δi
will still be positive at the next time step tn+1.

Similar result holds for other monotone fluxes [9].
Then we obtain the sufficient conditions to preserve the positivity of the distribution functions. Firstly, the time

interval should satisfy the CFL condition

Δt ≤ 1

A+ νmax
, A =

3

2w1 |Δi | max

⎧⎪⎨⎪⎩
1

2

3∑
e=1

|c j ·ne |se , |c ·ne |se
⎫⎪⎬⎪⎭ , (15)
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TABLE 2. Conditions across a Normal
shock wave of Mach number Ma = 2.05.

Property Upstream Downstream
Density 1.0 2.334

Temperature 1.0 2.144
Velocity 1.871 0.802

where, w1 =
1
6

, νmax is the maximum collision frequency. Therefore, the time interval must be smaller than the
minimum mean collision time. Secondly, the values of the distribution functions on the quadrature points xδ should be
positive, which is achieved by a linear scaling limiter [9]. At each time step, new polynomials f new

Δi
(x,y) is constructed

to replace the solutions f n
Δi

(x,y) which is defined as

f new
Δi

(x,y) = θ
(

f nΔi (x,y) − f
n

Δi

)
+ f

n

Δi
, θ =min

⎧⎪⎨⎪⎩
f
n

Δi
− ε

f
n

Δi
− fmin

,1

⎫⎪⎬⎪⎭ (16)

with
fmin =min

δ
f kΔi (xδ ), ε =min

i

{
10−20, | f nΔi |

}
. (17)

This limiter retains the accuracy and conservativity of the solutions.
Since the high-order Runge-Kutta time discretization is a convex combinations of Euler forward scheme, the full

schemes with high-order time discretization will still satisfy the positivity preserving property of the cell average
values [9].

RESULTS AND DISCUSSIONS

In this section, we provide numerical results to demonstrate the performance of the positivity limiter for RKDG
method on triangular meshes described in the previous section. The density and temperature profiles of the flow fields
are obtained using second and third order RKDG schemes. The solutions are compared with those obtained from
experimental data and DSMC calculations. The numerical schemes were implemented in C++ and MPI was used for
the parallel version of the code.

Normal Shock Wave

We first test the accuracy of the schemes. The results presented below were computed from a normal shock wave
in Argon gas at Mach number of M1 = 2.05. At this Mach number condition, the RKDG schemes are stable even
without limiters. The same parameters as in the experiments by Alsmeyer [13] were used here with upstream density
ρ1 = 1.067× 10−4 kg/m3 and temperature T1 = 300 K, corresponding to the mean free path of the hard sphere models as
λ1 = 1.098× 10−3 m. The non-dimensionalized boundary conditions obtained from the Rankine-Hugoniot relation are
shown in TABLE 2. The reference speed is c0 =

√
2RT1. The second-order and third-order RKDG methods were used

to solve the 2D/3V ES-BGK model on two-dimensional spatial mesh with uniform triangulation. The spatial mesh
and boundary conditions are shown in Fig. 1. The length of the domain was 40λ1. The top and bottom boundaries
were symmetries. The left boundary was the hypersonic inlet with upstream condition, and the right boundary was a
specular wall moving with the down stream. At the beginning, the x < 0 region was initialized with upstream condition
while the x > 0 region was initialized with the downstream one. The velocity grid of 13 × 13 × 13 discrete velocities
with bounds [−u2 − 5

√
T2/2, u2 + 5

√
T2/2] in x direction and [−5

√
T2/2, 5

√
T2/2] in the other two directions, and the

first-order quadrature rule were used. When L2 norm of the change in velocity distributions with each time-step was
less than 10−5, the steady state solutions were assumed to have been reached.

The obtained results are compared with the DSMC solutions, experimental data and analytical results. The DSMC
simulation used 300 cells. The average number of molecules per cell was about 50. About 30,000 iterations with a
time of 7.5 × 10−8 s were needed to reach steady state. The macro-parameters were sampled over another 50,000
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FIGURE 1. Spatial mesh and boundary conditions for normal shock wave.

TABLE 3. Errors of the overshoot temperature. RKDG with the limiter compared to ones without limiter.

Method Cell number Δt/ × 108 s
RKDG without limiter RKDG with limiter

iterations L1 error L∞ error iterations L1 error L∞ error

DG-2

16 7.52 3,181 1.67E-2 3.18E-1 3,082 1.56E-2 1.45E-1
32 3.95 7,328 3.99E-3 1.17E-1 7,247 3.84E-3 9.95E-2
64 2.03 15,051 1.15E-3 2.10E-2 15,035 1.15E-3 2.10E-2
128 1.03 30,046 5.46E-4 5.37E-3 30,037 5.46E-4 5.37E-3

DG-3

8 13.70 1,524 1.72E-2 1.53E-1 1,507 2.39E-2 1.26E-1
16 7.52 3,440 3.25E-3 5.26E-2 3,340 2.68E-3 5.12E-2
32 3.95 7,475 5.39E-4 2.79E-3 7,448 5.39E-4 2.78E-3
64 2.03 15,118 4.15E-4 2.04E-3 15,105 4.15E-4 2.04E-3

steps. One of the important properties of a shock wave in a monatomic gas is the overshoot of temperature associated
with the longitudinal component of thermal velocities Tx , which is related to the number density n as

Tx

T1
=

1

3

[(
5M2

1 +3
) n1

n
− 5M2

1

( n1

n

)2]
. (18)

Here, we use this parameter as an analytical criterion to demonstrate the errors of the RKDG solutions.
The relative L1 and L∞ errors of the overshoot temperature for RKDG method with the positivity-preserving limiter

comparing with the original RKDG method without a limiter are shown in TABLE 3. The downstream parameters were
used to determine the time step Δt. The DG-2 results of the L1 and L∞ errors of the overshoot temperature for 128
triangles reduce to 5.46 × 10−4 and 5.37 × 10−3, while the DG-3 method obtains the result of the same accuracy on
just 32 triangles. For each case with the same computing conditions, the RKDG scheme combining with the positivity-
preserving limiter uses a bit fewer iterations to get the steady flow field, and the errors of the solutions are also at
the same level. Therefore, the limiter keeps the designed order of accuracy. Figure 2 shows the normalized density
ρn =

ρ−ρ1

ρ2−ρ1
and temperature Tn =

T−T1

T2−T1
. The black solid lines are the profiles of DG-3 solution with limiter on 32

triangles, the blue dash dot line is the density distribution from experiment and the red dots illustrate the DSMC
results. The proposed scheme captures the normal shock structure very well.

2D Supersonic Flow Past a Cylinder

In this test we consider a flow past a cylinder of radius 0.04m. The free stream gas is Ar with ρ∞ = 1.95 ×
10−4 kg/m3, T∞ = 200 K, M∞ = 6.0 for density, temperature and Mach number respectively. The VHS model was
used to calculate the viscosity, which gives a Knudsen number Kn of 0.005 at infinity. We choose such a small Kn to
test the stability of the schemes, because the flow can generate a strong bow shock passing the cylinder.

The second-order RKDG method was used to solve the 2D/3V BGK model equation on unstructured triangulation
with 2,313 triangles. The computational domain was restricted to the upstream flow and the influence of the flow
downstream from the cylinder was neglected. We employed the Simpson’s quadrature rule and the velocity grid of
35 × 35 × 35 points ranging from −11.07 to 11.07 (nondimensionalized by

√
2RT∞, where R is the gas constant) in

each velocity direction. According to the CFL condition, the time interval of 9.02 × 10−9 s was used, and the time
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(a) Density profile (b) Temperature profile

FIGURE 2. Normalized density and temperature profiles of normal shock wave.

(a) Density DG-2 (b) Density DSMC (c) Temperature DG-2 (d) Temperature DSMC

FIGURE 3. DG-2 and DSMC solutions of hypersonic cylinder flow.

convergence criterion was that the L2 norm of residual of the velocity distributions decreased by a factor of 104. The
obtained results are compared with DSMC solutions, which used 400 × 700 cells and totally 6.18 × 106 molecules.
About 30,000 iterations with a time of 1.9 × 10−7 s were needed to reach steady state. The macro-parameters were
sampled over another 30,000 steps. The DG-2 solutions of density and temperature contours are shown in Fig. 3
together with the DSMC results. The flow flied structures from both the methods display rather striking similarity.

CONCLUSIONS

A stable RKDG scheme which strictly preserves the positivity of the solutions, has been designed to solve the
Boltzmann kinetic model equations for hypersonic rarefied gaseous flows. The stability is kept by the accuracy of
the velocity discretization, the conservation of the collision terms and a limiter. For hypersonic flows, the appropriate
velocity ranges could become quite wide and a large number of discrete velocities are needed to meet the accuracy
requirement. Therefore, the equally-spaced composite Newton-Cotes formulas are more convenient to approximate
the velocity integral with appropriate velocity bounds. Based on the first-order Euler forward time discretization and a
special triangle quadrature rule, the sufficient conditions which keep the positivity of the cell average solutions of the
velocity distributions are obtained. These sufficient conditions require the time step smaller than the minimum local
mean collision time, and that the values of velocity distributions on the quadrature points are always non-negative.
The later requirement is forced by a linear limiter. Since the high-order Runge-Kutta time discretization is a convex
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combination of Euler forward, the full schemes with high-order time discretization will still satisfy the positivity
preserving property of the cell average values. Verification of the scheme has been performed by comparison with
DSMC and analytical solutions for normal shock wave at Mach number of 2.05 and a hypersonic flow at Mach number
of 6.0 passing a 2D cylinder. Results show that, the scheme is stable and accurate to capture the shock structures.
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