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Abstract. The high-order Runge-Kutta discontinuous Galerkin (DG) method is extended to the 2D kinetic model 
equations describing rarefied gas flows. A DG-type discretization of the equilibrium velocity distributions is formulated 
for the Bhatnagar-Gross-Krook and ellipsoidal statistical models which enforce a weak conservation of mass, momentum 
and energy in the collision relaxation term. The RKDG solutions have up to 3rd-order spatial accuracy and up to 4th-order 
time accuracy. Verification is carried out for a steady 1D Couette flow and a 2D thermal conduction problem by 
comparison with DSMC and analytical solutions. The computational performance of the RKDG method is compared 
with a widely used second-order finite volume method.  
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INTRODUCTION 

In a wide range of applications, non-equilibrium rarefied gas flows require simulation with accurate and efficient 
computational methods and aerothermodynamics models. The governing equation for rarefied gas flows at arbitrary 
Knudsen numbers is the Boltzmann equation, which includes a complex nonlinear collision term. Two broad 
categories for the numerical solutions of the Boltzmann-based equations are stochastic approaches and deterministic 
methods. The direct simulation Monte Carlo (DSMC) method [1] is a stochastic approach that has been widely 
applied to analyze high-speed rarefied flows. A major shortcoming of the DSMC method is the high computational 
cost for near the continuum and low-speed flows. In addition, the stochastic particle-based approach is less suitable 
for unsteady flow simulations.  

An alternative approach is the deterministic numerical simulation of the full Boltzmann or kinetic model 
equations with a simplified collision term model. Two of the often-used forms of model kinetic equations are the 
Bhatnagar-Gross-Krook (BGK) [2] and the ellipsoidal statistical BGK (ES-BGK) [3] models. Although the 
deterministic solutions have shown significant improvement in numerical efficiency, especially in low-speed micro-
scale flows, the multi-dimensionality of the equations in phase space makes the approach demanding in terms of 
CPU time and memory. Therefore, high-order numerical schemes are desirable for expanding the scope of rarefied 
flow problems that can be solved accurately. Recent approaches for spatial discretization include finite difference 
method (FDM) [4, 5, 6], finite volume method (FVM) [7] and Runge-Kutta discontinuous Galerkin (RKDG) method 
[8, 9]. Both explicit [4, 5] and implicit schemes [4, 7, 10, 11] have been implemented for the time discretization in 
the FDM and FVM methods. 

The RKDG method is a finite element method [12], which is well suited for the solution of time-dependent 
hyperbolic and advection dominated equations. Compared to other high-order methods like FVM or FDM, this 
method can obtain solutions with arbitrarily high-order accuracy with relatively small cost. Other advantages include 
easy formulation of boundary conditions and efficient parallel implementation. The RKDG method has been applied 
for the 1D/1V kinetic models [8]. In this work, we extend the conservative formulation of RKDG to 2D/2V and 
2D/3V formulations of model kinetic equations.  Two steady problems are used to verify the proposed solver and 
comparisons with an FVM solver are performed in order to analyze its computational efficiency. 

KINETIC MODELS 

The kinetic model equations are written as 
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where, f is the molecular velocity distribution function, while c and r are the velocity and spatial coordinates. In 
BGK model fE is the local Maxwell distribution, and in ES-BGK model fE is a local anisotropic Gaussian, � is the 
collision frequency given as 
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where P is the pressure,  �  is  the viscosity coefficient assumed here in a power-law form �=�ref(T/Tref)�, with �ref, 
Tref and � given by Bird [1]. Pr is the Prandtl number, taken as 2/3 for a monatomic gas. For 2D/2V cases, two 
reduced distribution functions are introduced to reduce the computational cost 
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  Finally, the governing equations are obtained as 
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where p =0 denotes the full distribution function for 3V cases. 

NUMERICAL METHOD 

The model equations are first discretized in the velocity space. Both Cartesian and spherical type meshes are 
used [11]. The Cartesian type is easy to implement, however, the finite limits on the velocity space must be chosen 
carefully to ensure that transport processes for velocities outside the target range have a negligible effect. The 
spherical type is well suited for highly non-equilibrium flows. Gaussian-Laguerre quadrature up to 16th order in 
velocity magnitude and both 3/8th Simpson rule and constant interval in angles have been applied here. The velocity 
nodes are stored in an array, where cj is the jth element of the array. If we denote fp

j(t,x,y)=f(t,x,y,cj), the model 
equations are transformed into a system of equations 
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The macroscopic parameters are calculated through numerical quadrature of the corresponding moments of velocity 
distribution functions. 

Discontinuous Galerkin Formulation and Time Discretization 

We use the discontinuous Galerkin method to discretize the system on both structured and unstructured triangle-
type spatial meshes. The approximate solutions of fp

j are sought in the finite element space of piecewise functions 
within each triangle Ki [12] 
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where, �i
l(x,y) is the basis function supported in triangle Ki and k is the total number of the basis functions, while 

,
, ( )j l

p iF t  is the respective degree of freedom. In this work, we present the piecewise linear and piecewise quadratic 
approximations with 2nd-order and 3rd-oder spatial accuracy, respectively. For the 2nd-order case, the three basis 
functions are the linear functions which take the value 1 at one of the midpoints of the edges of Ki and the value 0 at 
the midpoints of the other two edges. For the 3rd-order case, the basis functions are the quadratic functions which 
take the value 1 at one of the six points (the three midpoints of edges and three vertices) in Ki and value 0 at the 
remaining five points. 

In order to determine the degrees of freedom, the standard techniques of the finite element formulations are 
applied to obtain the weak formulation of the governing system of equations, which is expressed as 
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where, he,Ki(x,y,t) is the numerical flux at the edge e of the triangle Ki, with the matrice mlM and  mlQ  are defined as 
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Finally, the resulting system of ordinary differential equations (ODEs) is discretized in time by a special class of 

explicit total variation diminishing (TVD) Runge-Kutta schemes [13]. 

Numerical Flux and Boundary Conditions 

The values of fp
j have discontinuities at the edges of the triangles. Two-point Lipschitz numerical fluxes are used 

to approximate the exact fluxed [12]. In this work, this simple upwind flux is applied 
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where fp

j(int(Ki),t) is the approximate solution obtained from the interior of the triangle Ki and fp
j(ext(Ki),t) is the one 

obtained from the exterior of Ki. ne,Ki is the outward unit normal to the edge e. 
The boundary values fp

j(ext(Ki),t) should be specified at the boundary edges. Five different types of boundary 
conditions are incorporated into the solver, which include: symmetry boundary, specular-diffuse moving wall with a 
given accommodation coefficient, periodic boundaries, far pressure inlet/outlet boundaries, and supersonic 
inlet/outlet boundaries. 

Conservative Discretization of the Collision Term 

The discrete equilibrium distribution functions 
fE , p

j

are evaluated at each intermediate step of the Runge-Kutta 
process such that the conservations of mass, momentum and energy are enforced in the collision relaxation term. For 
the BGK model, fE , p

j  are defined as 
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For the ES-BGK model, ,
j

E pf  are defined as 
2 2
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Here, u(u,v) is the macroscopic flow velocity.  

In order to be consistent with the weak formulation of the DG method and to retain high order accuracy, the 
coefficients as are sought with the form 
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The difference between this form and the one used in the FVM method is that the collision frequency and other 

macro properties can vary inside the spatial elements. The unknown coefficients As
l are obtained from the weak 

formulation of mass, momentum and energy conservation for the collision relaxations [8]. The obtained non-linear 
system of equations is solved using Newton’s method.  In this way, the discrete collision term does not give rise to 
any source or sink of mass, momentum or energy.  

RESULTS AND DISCUSSIONS 

Verification of the numerical solution of Boltzmann kinetic model equations with the RKDG method 
formulations in 2D/2V and 2D/3V is carried out by comparison with analytical solutions for a 1D and 2D steady 
flow problems. The RKDG solution is compared with analytical formulas and the DSMC solution as well as 
numerical solutions by a finite-volume solver [7]. For convenience, the notations of the numerical method are 
illustrated in Table 1. The entire set of tests is done in double precision on the CARTER parallel cluster in Purdue 
University. Specially, the queue has 4 nodes with two 8-Core Intel Xeon-E5 processors and 32GB RAM per nodes. 

 
TABLE 1.  Notations of the Numerical Methods Used in this Work. 

Notation Numerical method 
DSMC The direct simulation of Monte Carlo method 
FVM-2 FVM with 2nd order minmod flux combined with 2nd order time integration 
RKDG-2 2nd order DG method with 2nd order RK time integration 
RKDG-3 3rd order DG method with 3rd order RK time integration 

Verification: One-Dimensional Compressible Couette Flow 

The first test case considered is the one-dimensional planar compressible Couette flow calculated on 2D meshes. 
The argon gas is bounded by two plates H=1.0 m apart maintained at a temperature of Tw=273 K. The bottom wall is 
at rest while the top one is moving with the velocity uw=300 m/s in the x direction. Initially the gas has a density 
�0=9.28×10-6 kg/m3 corresponding to the Knudsen number from the variable hard sphere model as 0.00925. For the 
cases Kn=0.0925 and Kn=0.925, all the conditions are same except the gas densities are �0=9.28×10-7 kg/m3 and 
�0=9.28×10-8 kg/m3, respectively. 

The 2D/3V numerical solutions were conducted for both the BGK and ES-BGK models. The steady-state 
solution was obtained by iterating in time until the time convergence was reached. The time convergence criterion is 
that the L2 norm of the change of density and temperature per time step 
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are less than 10-6, where Qnew is the macro parameters obtained at the current time step and Qold is the ones obtained 
at the previous step. 

The schematic of the spatial mesh for RKDG and FVM methods is illustrated in Fig. 1. The triangle type mesh 
was used in RKDG simulation, and the Cartesian type mesh was used in FVM simulation. For RKDG cases, the 
west and east boundaries were periodic boundary condition, while the zero-gradient boundary condition was utilized 
in FVM cases. In this 1D problem, the two conditions are equivalent. The specular-diffuse moving wall with a given 
accommodation coefficient is used on the upper and lower walls.  Cartesian type of velocity mesh were applied with 
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10�10�10 nodes for Kn=0.00925 case, and 20�20�20 nodes for the other cases. The CFL numbers of about 0.3, 
0.25 and 0.6 were applied for RKDG-2, RKDG-3 and FVM-3 respectively. All the cases were run on a single 
processor. The BGK solutions of bulk velocities are plotted in Fig. 2. Ny denotes the cell (triangle or rectangle) 
numbers along y direction. The very good agreements between the RKDG solutions and the DSMC results show the 
ability of the solver for rarefied flow with variable Kn numbers and wall conditions with variable accommodation 
coefficients. The big difference between the BGK solutions and ES-BGK solutions is the temperature profiles, 
which is due to the fact that the ES-BGK model gives a correct Pr number.  

 

 
FIGURE 1.  Schematic of the spatial meshes. The top triangle mesh is used in RKDG simulations, and the bottom Cartesian 
mesh is used in FVM simulations. 

 
For comparison of the computational efficiency of the methods, the time interval, number of iteration, number of 

computation nodes and total CPU times are listed in Table 2. The RKDG method in general is more CPU intensive 
than the FVM-2 method for the same number of cells. The most computationally intensive part is the calculation of 
the equilibrium distribution functions in the collision relaxation term [8]. This is the reason that the solution of the 
ES-BGK models requires more time than that of the BGK solution (about 3 times). In addition, the DG method 
requires smaller time steps than the FV method. Based on the comparisons of the bulk velocity with the DSMC 
results, the RKDG-2 solution with Ny=8 and the RKDG-3 solution with Ny=4 are at least as good as FVM-2  with 
Ny=128. This indicates that the DG method is more efficient in the discretization of the physical space. The CPU 
times for the RKDG-2 solution with Ny=8 are about 5 times less than that for the FVM solution with Ny=128 for the 
BGK model.  The required memory is also about 5 times less. In general, the RKDG-2 solution requires 
significantly less memory and CPU time than FVM-2 with the same accuracy. The RKDG-3 method is not more 
efficient than the FVM-2 due to the smaller time steps are required. Note that the stencil of the DG method only 
involves the closest neighbor cells, which allows for more efficient domain decomposition in parallel computations. 
 

TABLE 2. Computational Parameters for Different Methods and Models for Couette flow. 
Solution Mesh �t, sec # of iterations CPU time, h RL1error, % RL2error, % 

BGK 
RKDG-2 

4×2 5×10-5 1,357 0.08 12.14 7.20 
4×4 3×10-5 15,831 1.70 2.51 1.93 
4×8 2×10-5 18,514 3.83 0.72 0.42 

4×16 1×10-5 36,593 14.55 0.51 0.23 
4×32 8×10-6 52,333 40.98 0.50 0.22 

 
ES-BGK  
RKDG-2 

4×2 5×10-5 1,360 0.33 12.36 7.20 
4×4 4×10-5 11,979 5.30 2.47 1.92 
4×8 2×10-5 17,899 14.94 0.70 0.42 

4×16 1×10-5 35,027 58.18 0.41 0.19 
 

BGK 
RKDG-3 

4×2 3×10-5 17,155 10.71 3.05 1.88 
4×4 2×10-5 18,553 20.86 0.65 0.37 
4×8 1×10-5 36,667 84.863 0.50 0.25 

 
BGK 

FVM-2 
4×16 2×10-5 10,295 0.32 13.74 7.93 
4×32 1×10-5 29,263 1.72 7.66 3.66 
4×64 8×10-6 42,614 5.25 2.96 1.22 

4×128 4×10-6 89,693 20.57 1.04 0.38 
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(a) BGK RKDG-2 solutions with Kn=0.00925, �=1.0      (b)    BGK RKDG-3 solutions with Kn=0.00925, �=1.0 

 

                  
(c) BGK FVM-2 solutions with Kn=0.00925, �=1.0     (d)   BGK RKDG-2 solutions with variable Kn and � 

 
FIGURE 2. Calculated bulk velocities for BGK solutions of Couette flow with different numerical methods 

 

 
 

FIGURE 3.  Calculated temperature for RDKG-2 solution for different models with Kn=0.00925, �=1.0 

Verification: Two-Dimensional Thermal Conduction 

The second verification is carried out for a steady two-dimensional thermal conduction problem with three 
boundaries maintained at T1=273.15 K, while the fourth side is maintained at T2=327.78 K. The Argon gas is 
initialized with temperature T1, and density �=4.77×10-4 kg/m3, corresponding to a Knudsen number of 0.0018. The 
2D/2V RKDG method was applied for the ES-BGK model. Solutions were sought on the domain of 0.05�0.1 m, 
with four different spatial meshes including an unstructured mesh. The symmetry boundary is used at x=0.05 m. 
Spherical type of velocity mesh with 3/8th Simpson rule consisting of  8 nodes in velocity magnitude and 12 nodes in 
velocity angle were used.  
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(a) RKDG-2 solutions on 4 triangles                      (b) RKDG-3 solutions on 4 triangles 

            
(c) RKDG-2 solutions on 16 triangles                     (d) RKDG-3 solutions on 16 triangles 

             
(e) RKDG-2 solutions on 64 triangles                      (f) RKDG-3 solutions on 64 triangles 

             
(g) RKDG-2 solutions on 68 triangles                     (h) RKDG-3 solutions on 68 triangles 

FIGURE 4.  Comparison of RKDG solutions on different meshes for a 2D thermal conduction problem 
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Time convergence was reached when the L2 norms of the density and temperature residuals are less than 10-7
. The 

theoretical solution is given as [14] 
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where � is the normalized temperature as. L and W are respectively the length and width of the plate. Calculated 
temperature contours compared with the theoretical solution are plotted in Fig. 4. Good agreements are observed 
between the RKDG solutions and the theoretical solution. To study convergence, the L2 norm errors are estimated 
for each case. The theoretical result is used as the exact solution. The CPU time and the number of nodes are also 
illustrates for each case. Comparison shows that, for the same convergence level, the RKDG-3 method uses at least 
16 times fewer cells than that of RKDG-2 method. Therefore, with same spatial elements, the RKDG-3 method 
obtains much better results than that of RKDG-2 method. However, as mentioned above, it requires larger CPU time 
and memory. 

CONCLUSIONS 

The high-order RKDG method has been extended to 2D/2V and 2D/3V Boltzmann model equations. In this 
approach, the velocity space is firstly discretized using either Cartesian or spherical type discrete velocity methods. 
Then, the discrete partial differential equations are discretized on spatial triangle-type meshes using the 
discontinuous Galerkin (DG) method. The linear and quadratic functions are chosen as the basis functions 
respectively for the second-order and third-order DG method. The system of ordinary differential equations, which 
is obtained from the spatial discretization, is finally discretized in time using a special class of explicit Runge-Kutta 
time discretization methods. At each intermediate step of the RK process, the equilibrium velocity distribution 
function in the model equations is estimated using a discontinuous conservative discretization method, which 
enforces a weak conservation of mass, momentum and energy for the collision relaxation term. Verification of the 
formulation and solver has been performed by comparison with DSMC and analytical solutions for rarefied 
compressible Couette flow and near-continuum 2D thermal conduction problem. Results show that, with the same 
accuracy, RKDG-2 solution requires significantly less memory and CPU time than that of FVM-2 method.  
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