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Abstract
An implicit high-order discontinuous Galerkin (DG) method is developed to find the steady-
state solution of rarefied gas flow described by the Boltzmann equation with full collision
operator. In the physical space, the velocity distribution function is approximated by the
piecewise polynomial of degree up to 4, while in the velocity space the fast spectral method
is incorporated into the DG discretization to evaluate the collision operator. A specific poly-
nomial approximation for the collision operator is proposed to reduce the computational cost
of the fast spectral method by K times, where for two-dimensional problem K is 15 when the
DG with 4th-order polynomial is used on triangular mesh. Based on the first-order upwind
scheme, a sweeping technique is employed to solve the local linear equations resulting from
the DG discretization sequentially over spatial elements. This technique can preserve stabil-
ity of the scheme and requires no nonlinear limiter in solving hypersonic rarefied gas flows
when the shockwave structure is fully resolved by fine spatial grid.Moreover, without assem-
bling large sparse linear system, the computational cost in terms of memory consumption
and CPU time is significantly reduced. Five different one/two-dimensional tests including
low-speed microscale flows and hypersonic rarefied gas flows are used to assess the accuracy
and efficiency of proposed approach. Our results show that, DG scheme of different order of
approximating polynomial requires the same number of iterative steps to obtain the steady-
state solution with the same order of accuracy; and the higher order the scheme is, the fewer
spatial elements are needed, thus leading to less CPU time. Besides, our method can be faster
than the finite difference solver by about one order of magnitude. The produced solutions
can be used as benchmark data for assessing the accuracy of other gas kinetic solvers for the
Boltzmann equation and gas kinetic models that simplify the Boltzmann collision operator.
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1 Introduction

In gas kinetic theory, the dynamics of dilute gas is described by the one-particle velocity
distribution function and the macroscopic flow properties are derived from corresponding
velocity moments [13]. This theory has been used to describe transport phenomena in a wide
range of scientific disciplines and applications such as the aerothermal dynamics in aerospace
engineering, fusion processes in nuclear science, natural gas extraction in unconventional
reservoirs, freeze drying techniques in pharmaceutical and food manufacture, electron trans-
port in semiconductor devices, and physics of diffuse matter in interstellar medium, just to
name a few. In Boltzmann’s description, the variation of velocity distribution function comes
from the linear streaming in the phase space, and the nonlinear interaction due to binary
collisions. Thus, the velocity distribution function is a seven dimensional variable, with three
in the physical space, three in the molecular velocity space, and one in time. Meanwhile, the
nonlinear collision operator is a fivefold operator with three dimensions in the velocity space
and two dimensions in a unit sphere (i.e. solid angle).

The multi-dimensional structure of the Boltzmann equation poses a real challenge to its
numerical solution [24]. Historically, two major categories of approaches have been devel-
oped. One is the stochastic approach, which uses simulation particles to represent a large
number of real molecules andmimic the molecular behaviors. The prevailing one is the direct
simulation Monte Carlo (DSMC) method [6]. During the simulation, particles move through
the spatial space in a realistic manner with respect to the time, while intermolecular collisions
and molecule-surface interactions are calculated in probabilistic manner. The other category
is the deterministic approach, which adopts a numerical quadrature to approximate the inte-
gration with respect to the molecular velocity on a set of fixed discrete points [3,33]. As a
result of discretization in the velocity space, the original kinetic equation is represented as a
set of linear hyperbolic equations with nonlinear source terms that couple all the equations.
To solve the resulting system, schemes from the traditional computational fluid dynamics
(CFD) for hyperbolic conservation law can be applied straightforwardly for the streaming
term. Some hybrid stochastic-deterministic approaches have also been proposed to solve the
Boltzmann equation [4,11,67].

In this paper, we focus on the deterministic method to solve the Boltzmann equation,
which requires proper treatment of the linear streaming and nonlinear collision operator. The
finite difference method (FDM), finite volume method and finite element method have been
successfully employed to approximate spatial derivatives [27,37,38,43,65,76]. The advantage
of these methods is that they have been well developed to achieve high order spatial and
temporal accuracy. However, they might lose robustness and produce nonphysical solution,
when the velocity distribution function has large variation and/or the kinetic equation becomes
stiff [24]. Another category of schemes is the semi-Lagrangian [19,20,31] and Lagrangian
methods [21,22], which are designed to ensure positivity of solutions. The basic idea of these
schemes is to solve the streaming for successive time steps by following the characteristics,
i.e. molecular trajectories. The semi-Lagrangian methods still utilize fixed computational
grid, but evaluate solution at the points that can be transported by the molecular velocity
onto the computational grid within a time step. The Lagrangian methods update solution
according to streaming without using a spatial mesh. Instead, the calculation reduces to a
single manipulation for each discrete velocity.

To simulate the collision, the most simple and widely used way is to replace the compli-
cated collision operator by a relatively simple kineticmodel, e.g. theBhatnagar–Gross–Krook
(BGK) model [5], ellipsoidal statistical BGK model [32], and Shakhov model [55], which
describes the relaxation of velocity distribution function to the local equilibrium distributions
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determined bymacroscopic flow properties. Otherwise, the full Boltzmann collision operator
should be calculated. Attempts to directly solve the full Boltzmann collision operator started
from the late 1980s. Goldstein et al. constructed a discrete collision mechanics on the veloc-
ity nodes, which can preserve the main physical properties of the collision operator [28].
However, a large amount of discrete velocities are required, since post-collision velocities
must fall on the grid points. The computational cost is O

(
N̄ 7

)
(N̄ is the number of points

in each velocity direction), and the nominal accuracy is less than first order of the step size
in the velocity space [8]. Improvement by using an interpolation to map the post-collision
velocities onto the velocity grid makes the performance of the scheme comparable to or even
faster than DSMC in simulating normal shock wave structure [44]. The projection method
has also been proposed to evaluate the Boltzmann collision operator over a set of “on-lattice”
collision pairs with different velocities, aim distances and reflect angles [63,64]. The kinetic
theory group in Kyoto introduced another family of method evaluating collision in the veloc-
ity space [39,48,49,57], in which the velocity distribution function is expanded in terms of
basis functions. The numerical kernels are pre-computed by numerical integration, which
are restricted to the hard-sphere model and the distribution function with cylindrical sym-
metry. Note that there are other schemes such as the method based on nodal-discontinuous
Galerkin discretization of the collision operator and a bi-linear convolution of the Galerkin
projection [1].

Instead of directly calculating the collision integral on discrete velocities, there is another
route to approximate collision in the frequency domain using Fourier transform technique.
These methods can not only possess spectral accuracy, but also reduce computational cost
through fast spectral algorithm. The pioneeringworkwas introduced byBobylev forMaxwell
molecules [7]. Then, several spectral methods were developed, which have computational
cost at the order of N̄ 6 [9,50]; the computational cost can be reduced to O

(
N̄ 3 log N̄

)
for

distribution functions possessing cylindrical symmetry,when the fast Fourier transform (FFT)
and Hankel transform are employed [68]. However, the accuracy is only O

(
N̄−1/2

)
. Based

on the Carleman representation, an algorithm was developed for hard-sphere molecules to
achieve accuracy of O

(
N̄−2

)
, where the integration over the unit sphere is separated from the

one over the velocity space [10]. By employing the generalized Radon and X-ray transform,
its computational cost is of O

(
N̄ 6 log N̄

)
. The algorithm for variable hard-sphere molecules

of accuracy O
(
N̄−2

)
was also proposed with complexity of O

(
N̄ 6

)
[34]. The fast spectral

method (FSM) that is spectrally accurate has been developed since the new century [26,51].
Bymeans of theCarleman representation, themethod is improvedwith the computational cost
reduced to O

(
M̄2 N̄ 3 log N̄

)
, where M̄ is the number of polar and azimuthal angles [25,45],

which is the fastest algorithm been reported to date. To extend the applicability of FSM, novel
anisotropic collision kernels were designed and incorporated, which can deal with all inverse
power-law potentials (except the Coulomb potential) as well as the Lennard-Jones potential
[70,72]. Later, the collision kernel for Lennard-Jones potential was fully resolved, however,
the computational cost is increased to O

(
M̄2 N̄ 4 log N̄

)
[69]; together with the fast iterative

scheme for the streaming [73], the FSM for the Lennard-Jones potential is able to produce
very close results to the experimental measurement of Poiseuille and thermal transpiration
flows [71]. The FSM has also been extended to the Boltzmann collision operators for gas
mixtures [74] with general intermolecular interactions like the Lennard-Jones potential [73].
The developed FSMhas been successfully applied to solvemany canonical rarefied gas flows,
where the computational efficiency is much higher than the low-variance DSMC method for
low-speed flow [53,70].
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In this paper we aim to further increase the computational efficiency for the Boltzmann
equation with full collision operator. The numerical challenge is that the computational cost
becomes prohibitive for realistic problems, since: (1) the number of governing equations is
large due to the discretization in the velocity space; (2) for each equation, the collision operator
needs to be evaluated at every spatial grid point or element (even theLagrangianmethods need
spatial mesh for approximation of collision). Therefore, high-order CFD approach is critical
to improve efficiency of discretization in the spatial space, thus reduce the computational cost.
One of the promising methods for this purpose is the discontinuous Galerkin (DG) method,
which was first introduced for the neutron transport equation [54]. The DG method provides
advantages including: achieving high-order of accuracy with relatively small effort, easy
formulation for arbitrary geometry, straightforward implementation of boundary condition
with the same high-order accuracy as in the interior of computational domain, as well as
efficient implementation for parallelism and adaptive refinement. After combining an explicit
high-order Runge-Kutta time marching scheme, the method has achieved great success in
solving convection-dominated problems [15,16]. The explicit DG method has been applied
to solve the kinetic model equations [60]. Very recently, it has also been applied to the full
Boltzmann equationwith variable soft-sphere collision kernel, in which the collision operator
is calculated based on a FSM having a cost at the order of M̄2 N̄ 4 log N̄ [35]. It has been
shown that the second-orderDGmethod is 15 times faster than the second-order finite volume
scheme [60]. However, higher-order explicit DG scheme is not superior to the lower-order
one, mainly due to the fact that the time step restricted by the Counrant-Friedrichs-Lewy
(CFL) condition becomes extremely small [40]; thus the number of iterations becomes very
large in finding steady-state solution with high-order discretization.

Note that the FSMhas also been incorporated in theBoltzmann solver based onLagrangian
method for streaming [23]. The solution from this method is currently limited to first-order
accuracy in space and time. Besides, the time marching is an explicit scheme, thus the
total number of time steps is still enormous to obtain steady solution. It is also interesting
to mention that there is a class of methods, named (discrete) unified gas-kinetic scheme,
sharing some properties with the semi-Lagrangian scheme [29,30,42,80], in which the flux
transport across spatial cell interface contains the evolution of distribution function along the
molecular trajectories within a time step due to both streaming and collision. By coupling the
evaluations of both streaming and collision, the scale of spatial discretization can be reduced.
Thesemethods are first developed based on kineticmodel equations. Recently, approximation
of the Boltzmann collision operator using FSM is incorporated to correct the relaxation of
velocity distribution function to the local equilibrium state beyond the continuumflow regime
[42].

In this paper, we propose a high order DG method to solve the full Boltzmann equation,
which is devoted to improving the scheme in the following ways:

– An novel scheme is proposed to reduce the computational cost when using FSM to
calculate the collision operator, say, by 15 times when using 4th order approximating
polynomials on two-dimensional triangular mesh.

– Implicit iterative scheme for the convection term is employed to remove the limitation on
time step from the CFL condition. As a result, the superiority of high-order discretization
in the DG method can be reflected, which is in sharp contrast to the explicit DG where
the CFL number is rather small.

– A strategy based on the sweeping technique for solutions of the local linear systems
resulting from DG discretization is introduced, which can avoid solving large sparse
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linear system, and stabilize the scheme without using any nonlinear limiter when the
high-speed rarefied gas flow is resolved.

The remainder of this paper is organized as follows. In Sect. 2, the Boltzmann equation
and FSM are introduced. In Sect. 3, the implicit DG method is described with details in the
formulation of collision operator. A scheme to reduce the complexity of DG discretization
for the collision operator is proposed in Sect. 4, while the sweeping strategy to solve the
linear systems is described in Sect. 5. In Sect. 6, five different problems including one-
dimensional shock wave, two-dimensional hypersonic flow past a square cylinder, lid driven
cavity flow and two thermal low-speed microscale flows are simulated to assess the accuracy
and efficiency of the proposed scheme. Conclusions and outlooks are presented in Sect. 7.

2 The Boltzmann Equation and Fast Spectral Method

In kinetic theory, the state of a gas system is described by the one-particle velocity distribution
function f (t, x, v), which is a function of the time t , spatial position x = (x1, x2, x3),
and molecular velocity v = (v1, v2, v3). Neglecting the external force, evolution of the
velocity distribution function for a single-speciesmonatomic gas is governed by the following
Boltzmann equation:

∂ f

∂t
+ v · ∂ f

∂x
= C ( f , f∗) , (1)

where C ( f , f∗) is the Boltzmann collision operator that is usually split into the gain term
C+ and loss term C−:

C ( f , f∗) =
∫ ∫

B (θ, |v − v∗|) f
(
v′∗

)
f
(
v′) dΩdv∗

︸ ︷︷ ︸
C+

− ν(v) f (v)
︸ ︷︷ ︸

C−

. (2)

with the collision frequency

ν(v) =
∫ ∫

B (θ, |v − v∗|) f (v∗) dΩdv∗. (3)

Note that here B (θ, |v − v∗|) is the collision kernel; v, v∗ are the pre-collision molec-
ular velocities of a collision pair, and v′, v′∗ are the corresponding post-collision molecular
velocities; Ω is the unit vector along the relative post-collision velocity v′ − v′∗, while θ is
the deflection angle between the pre- and post-collision relative velocities. For simplicity,
the time and spatial position is omitted in writing the velocity distribution function, collision
operator, and collision frequency.

The velocity distribution function is defined such that f (t, x, v) dxdv is the number of
gas molecules in the phase-space volume dxdv. All macroscopic quantities, such as mass
density ρ, bulk velocity u = (u1, u2, u3), temperature T , stress tension P and heat flux
Q = (Q1, Q2, Q3) can then be calculated via velocity moments of this distribution function.
For simplicity,we use non-dimensional variables hereafter: x is normalized by a characteristic
flow length H , T is normalized by a reference temperature T0, ρ is normalized by the average
density ρ0 at T0, v and u are normalized by the most probable speed vm = √

2kBT0/m with
kB andm being the Boltzmann constant and molecular mass, respectively, t is normalized by
H/vm, f is normalized by ρ0/mv3m, P is normalized by ρ0kBT0/m, and Qi is normalized
by ρ0kBT0vm/m. Therefore, we have

123



   39 Page 6 of 35 Journal of Scientific Computing            (2020) 82:39 

ρ =
∫

f dv, u = 1

ρ

∫
v f dv, T = 2

3ρ

∫
|v − u|2 f dv,

P = 2
∫

(v − u) ⊗ (v − u) f dv, Q =
∫

(v − u) |v − u|2 f dv.

(4)

The collision kernel B (θ, |v − v∗|), depending on themodules of the pre-collision relative
velocity and the deflection angle, is determined when the intermolecular potential is given
[13]. The detailed structure of the collision kernel is complicated, except that of the ideal
hard-sphere molecule. In history, both for analytical and numerical convenience, specific
simplification is adopted with the aim to recover correct transport coefficients, which results
in various molecular models that are widely used in the DSMC method. The key to these
models is that the transport coefficients such as the shear viscosity, thermal conductivity, and
diffusion coefficient are recovered over the temperature range considered. In this paper, the
collision kernel for the inverse power-law potential is modeled as [45]:

B (θ, |v − v∗|) = 5|v − v∗|2(1−ω)

27−ωΓ
(
5−2ω
2

)
Kn

sin1−2ω
(

θ

2

)
, (5)

where Γ is the Gamma function, ω is the viscosity index (i.e. the shear viscosity µ of gas
is proportional to T ω) and Kn is the unconfined Knudsen number given at the reference
condition:

Kn = μ (T0)

ρ0H

√
mπ

2kBT0
. (6)

It is noted that the specific form (5) introduced byMouhot and Pareschi enables the devel-
opment of Carleman-representation-based FSM to deterministically compute the collision
operator. It has the ability to mimic the growth trend of collision kernel when decreasing the
deflection angle and recover correct value of the shear viscosity, however it cannot deal with
general forms of soft potentials. By introduce another free-parameter into the collision kernel,
the authors have extended the applicability of FSM to all inverse power law potentials (except
the Coulomb potential), thus to recover the correct value of diffusion coefficient [70,72]. We
also mention that more general collision models including the Lennard-Jones potential has
been incorporated into FSM [69], where the computational cost is one order of magnitude
higher than that of Eq. (5). Therefore, in this paper Eq. (5) is adopted to demonstrate the
efficiency and accuracy of DG method on the spatial discretization. As a matter of fact, if
the viscosity index ω is chosen appropriately, the collision kernel can yield accurate result
when compared to that of the realistic Lennard-Jones potential [69,70]. On the other hand,
it will be shown that the DG method can reduce the computational cost of the Boltzmann
equation when compared to the finite difference method, as the higher computational cost of
the Boltzmann collision operator is, the more reduction in the computational time will be.

2.1 The Fast Spectral Method

In this paper, the FSM is applied to compute the full Boltzmann collision operator (2),
details of which can be found in Refs. [45,69,72]. Firstly, the velocity distribution function
is periodized on a truncated domain D = [− L, L]3 and expanded into Fourier series with
N1 × N2 × N3 components:
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f (t, x, v) =
N/2−1∑

j=−N/2

f̄ j (t, x) exp
(
ıξ j · v

)
, (7)

f̄ j (t, x) = 1

(2L)3

∫

D
f (t, x, v) exp

(
−ıξ j · v

)
dv, (8)

where L is the maximum truncated velocity, ı is the imaginary unit, f̄ j is the spectrum of
the velocity distribution function, ξ j = jπ/L is the discrete frequency with j = ( j1, j2, j3)
and N = (N1, N2, N3) denoting the index and total number of frequencies. In order to
take the advantage of FFT, the discretized frequency components are equally spaced, but the
discretized velocity grid points can be non-uniformly distributed to capture the discontinuities
and/or large variations in the velocity distribution function.

Then, the gain term in the collision operator and the collision frequency are evaluated
through expanding in Fourier series:

C+ =
N/2−1∑

j=−N/2

C̄ j
+ exp

(
ıξ j · v

)
, ν =

N/2−1∑

j=−N/2

ν̄ j exp
(
ıξ j · v

)
, (9)

where the j-th Fourier modes of the gain term in Eq. (2) and collision frequency (3) are
calculated from the spectrum f̄ as follows [70,72]:

C̄ j
+ =

N/2−1∑

l+m= j
l,m=−N/2

f̄ l f̄ mβ (l,m) , ν̄ j = f̄ jβ ( j, j) . (10)

Here, β is the collision kernel mode, whose (l,m)-th component is approximated through
Mqua-point numerical quadrature in spherical coordinates as [72]:

β (l,m) �
20

∑Mqua
p,q=1 sin

(
θp

)
Ψ

(√
|ξm |2 − (

ξm · ep,q
)2

)
Φ

(
ξ l · ep,q

)
pq

27−ωΓ
(
5−2ω
2

)
Kn

, (11)

with

Ψ (a) = 2π
∫ R

0
ρ1−γ J0 (ρa) dρ,

Φ (a) = 2
∫ R

0
ρ2(1−ω)+γ cos (ρa) dρ,

(12)

where θp (φq ) and p (q ) are the p (q)-th point and weight of the quadrature rule, respec-
tively, for θ , φ ∈ [0, π ], ep,q = (

sin θp cosφq , sin θp sin φq , cos θp
)
, J0 is the zeroth-order

Bessel function, and R is the radius of the sphere to support the distribution function, which
is chosen approximately as R = 2

√
2L/(2 + √

2) to avoid aliasing error [72]. Note that by
estimating through numerical quadrature, frequencies ξm and ξ l appear in two different func-
tions in the final form of β (l,m), thus Eq. (10) can be calculated by FFT-based convolution
[72].
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3 Implicit Discontinuous Galerkin Method

To obtain stationary solution of the Boltzmann equation, the following implicit iterative
scheme can be applied:

ν̄ f (t+1) + v · ∂ f (t+1)

∂x
= ν̄ f (t) + C

(
f (t), f (t)∗

)
, (13)

where the superscripts (t) and (t+1) represent two consecutive iteration steps. The iteration is
terminated when convergence to the steady solution is achieved. The parameter ν̄ is a positive
constantwhich is the reciprocal time step in the backward-Eulermethod and highly influences
convergence property of the iterative scheme: too large (small) ν̄ results in slow convergence
(numerical instability). Usually, to strike a balance between efficiency and stability of the
iteration, ν̄ is chosen to be the order of mean collision frequency

∫
ν(v) f (v)dv. Therefore,

a safe choice of ν̄ is the minimum mean collision frequency in the whole computational
domain. However, one needs a good estimation for the minimum ν̄ before calculation.

Another way to find the steady-state solution is to neglect the derivative of distribution
function with respect to the time, yielding v · ∂ f /∂x = C. Then, the collision frequency and
gain term of the Boltzmann collision operator are evaluated based on the approximation of
distribution at the iteration step (t), while other terms are solved at the next iteration step by:

ν(t)(x, v) f (t+1)(x, v) + v · ∂ f (t+1)(x, v)

∂x
= C(t)

+ (x, v). (14)

In the following sections, we will denote the iterative scheme (13) with mean collision
frequency as ‘ITR-MEAN’ and the iterative scheme (14) with local collision frequency as
‘ITR-LOC’. The two iteration schemes can lead to different computational complexity and
convergence history, which will be discussed in Sect. 5. Note that the implicit treatment is
only applied to the convection term at the (t+1)-th iteration step, while the collision operator
is explicitly evaluated at the (t)-th step. For conciseness, we will omit the index of iteration
step in the following unless necessary.

3.1 DG Formulation for the Boltzmann Equation

Now we present the DG method to find steady-state solution of rarefied gas flow described
by Eqs. (13) and (14). Let Δ ∈ R

d be a computational domain in the d-dimensional spatial
space with boundary ∂Δ. Then, the domain is partitioned into Mel disjoint regular elements
Δi . The DG method provides an approximate solution to the velocity distribution function
f on each element Δi in some piecewise finite element spaces V of the following form:

V = {ϕr (x) : ϕr |Δi ∈ Pk (Δi ) , r = 1, . . . , K ,∀Δi ∈ Δ}, (15)

where Pk denotes the space of k-th order polynomials, thus we have

f (x, v) =
K∑

r=1

ϕr (x) Fr (v) , (16)

with Fr being the degree of freedom for the velocity distribution function. In general, the
degrees of freedom are unknowns for which the equations are being solved. Together with
the basis functions ϕr , they give the final polynomial estimation of f within a spatial element
Δi . The number of degree of freedom, K , depends on the shape of element employed.
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For example, K = k + 1 for line segment in one-dimensional (1D) problem, and K =
(k + 1) (k + 2) /2 for triangular element in two-dimensional (2D) problem.

In order to determine Fr , standard techniques of finite element formulations are applied
to obtain the weak formulation of the governing system. Introducing (·) and 〈·〉 as (a, b)Δi

=∫
Δi

(a · b) dx and 〈a, b〉∂Δi = ∫
∂Δi

(a · b) dϒ to denote operators on the element Δi and its
boundary ∂Δi , respectively, we find the approximation of distribution function satisfies the
following equation (take the ITR-MEAN scheme (13) as an example):

− (∇ϕs, v f )Δi
+ 〈ϕs, Ĥ · n〉∂Δi + (ϕs, ν̄ f )Δi

= (ϕs, C)Δi
+ (ϕs, ν̄ f )Δi

, (17)

where s = 1, . . . , K , n is the outward unit normal vector, and Ĥ is the numerical flux that
depends on the solutions from both sides of ∂Δi , since the solution of f is discontinuous
there. We define the numerical flux from the first-order upwind principle as:

Ĥ · n = 1

2
v · n ( f + fext) + 1

2
|v · n| ( f − fext) , (18)

with fext being the distribution from a neighboring element that shares the boundary ∂Δi

with Δi . If ∂Δi is at the boundary of computational domain, i.e. ∂Δi ∩ ∂Δ = 0, fext is
evaluated using the given boundary condition.

Now, we focus on the formulation of (ϕs, C)Δi
= (ϕs, C+)Δi

− (ϕs, ν f )Δi
in Eq. (17).

Inserting the polynomial expansionof distribution function (16) intoEq. (8), the j-th spectrum
component of the distribution function can be rewritten in the following polynomial form:

f̄ j (x) =
K∑

r=1

ϕr (x) F̄ j
r , (19)

where F̄ j
r = 1

(2L)3

∫
D Fr (v) exp

(
−ıξ j · v

)
dv is the spectrum of the degree of freedom.

With some algebraic calculations from Eqs. (9) and (10), the DG discretization of the gain
term of the Boltzmann collision operator and the collision frequency is expressed as

C+ =
K∑

p=1

K∑

r=1

ϕpϕrΞp,r , ν =
K∑

p=1

ϕpΛp, (20)

where

Ξp,r =
N/2−1∑

j=−N/2

N/2−1∑

l+m= j
l,m=−N/2

F̄l
p F̄

m
r β (l,m) exp

(
ıξ j · v

)
,

Λp =
N/2−1∑

j=−N/2

F̄ j
pβ ( j, j) exp

(
ıξ j · v

)
.

(21)

Finally, we obtain that

(ϕs, C+)Δi
=

K∑

p=1

K∑

r=1

(
ϕs, ϕpϕr

)
Δi

Ξp,r , (22)

(ϕs, ν f )Δi
=

K∑

p=1

K∑

r=1

(
ϕs, ϕpϕr

)
Δi

ΛpFr . (23)
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3.2 Discretization in theMolecular Velocity Space

In order to obtain the macroscopic flow properties (4) and the spectrum (8), integrals with
respect to the velocity space should be calculated. Numerically, the truncated but continuous
velocity domain D needs to be represented by M := (M1, M2, M3) discrete points v j ′ and

integrals are approximated by certain quadrature rules, e.g. ρ = ∑M
j ′=1 f

(
x, v j ′

)
w j ′ with

w j ′ being the quadrature weight for the corresponding discretized velocity point v j ′ . The
discrete velocities are not necessarily equidistant, especially for low-speed microflow with
large Knudsen number, where the distribution function varies rapidly around v = 0 due
to gas-wall interaction and nonuniform velocity points with refinement in this area is more
efficient to capture the variation of f [61]. However, it should be emphasized that the FFT-
based convolution can be efficiently employed only when the frequency space is uniformly
discretized; also, since the FSM has spectral accuracy, the number of frequency components
can be smaller than that of velocity grid points [70].

As a consequence, we need to approximate the distribution function at each discrete
velocity point by solving M1 × M2 × M3 × K equations on each element Δi (take the
ITR-MEAN scheme (13) as an example):

−
(
∇ϕs, v

j ′ f j ′
)

Δi
+ 〈ϕs, Ĥ

j ′ · n〉∂Δi +
(
ϕs, ν̄ f j ′

)

Δi
=

(
ϕs, C j ′

)

Δi
+

(
ϕs, ν̄ f j ′

)

Δi
,

(24)

where f j ′ = f
(
x, v j ′

)
, Ĥ

j ′ = Ĥ
(
f j ′ , f j ′

ext

)
, and C j ′ = C

(
f j ′ , f j ′∗

)
denote the cor-

responding variables at each discrete velocity. The resulting governing equations can be
re-written into matrix form as:

Ai, j ′F j ′
i + Bext, j ′ = Si, j

′
, (25)

where F j ′
i = [F1(v j ′), . . . , Fr (v j ′), . . . ]T are the unknowns, i.e. the vector of degrees of

freedom of f j ′ on Δi . Other coefficient matrices are given in the Appendix.
The strategy to solve the linear systems that are coupled through numerical fluxes over all

the spatial elements will be described in Sect. 5.

3.3 Boundary Condition

At the boundary of computational domain, to determine the flux for an element Δi , the dis-
tribution function obtained from the exterior of the element, fext, is described by a given
boundary condition b j ′ . In this paper, the diffuse boundary condition for the gas-surface
interaction is used. Suppose the solid wall moves with a constant speed uw, and has a tem-
perature Tw that can either be a constant or vary along the wall, the distribution function for

reflected molecules [i.e. when
(
v j ′ − uw

)
· nw ≤ 0, nw is the outward unit normal vector of

the solid surface] is given by the equilibrium distribution:

b j ′ = ρw

(πTw)3/2
exp

(

− |v j ′ − uw|2
Tw

)

, (26)
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where, ρw is defined by:
∑

(
v j ′−uw

)
·nw<0

(
v j ′ − uw

)
· nw f j ′ +

∑

(
v j ′−uw

)
·nw≤0

(
v j ′ − uw

)
· nwb j ′ = 0 (27)

such that themass flux acrosswall is equal to zero. Implementation of other types of boundary
conditions such as symmetry boundary, far-pressure inlet/outlet boundaries, and supersonic
inlet/outlet boundaries can be found in Ref. [60].

4 Reduction of Computational Complexity in DG Formalism

The major computational cost to solve the system (25) arises from two parts: (1) evaluating
collision operator and (2) solving linear equations. In this section, we analyze the computa-
tional complexity for the evaluation of collision operator, while the solution of linear systems
will be discussed in Sect. 5. For simplification, we assume that equidistant discrete molecu-
lar velocities and frequencies are employed with M = N and N1 = N2 = N3 = N̄ . Then,
at each iterative step, equipped with the FFT-based convolution, the computational cost is

O
(
K 2MelM2

qua N̄
3 log N̄ + K 3Mel N̄ 3

)
, in which the first term arises in the calculation of

Ξp,r and Λr in Eq. (21), while the second term is for conducting the loops in Eqs. (22)
and (23).

We propose an approach to reduce the cost in evaluating the Boltzmann collision operator.
In the following discussion, we will omit the index of discrete molecular velocities j ′. The
approachmay be described heuristically in the followingmanner. If we choose the supporting
polynomials as nodal shape functions:

ϕr
(
x p

) =
{
0, if r = p,

1, if r = p,
(28)

where x p is the nodal points for interpolation, the degree of freedom Fr is actually the nodal
value of distribution function, say f (xr ). We assume that the distribution of C within an
element might as well be estimated by the nodal approximation such that the loss and gain
terms in the collision operator are approximated by the corresponding nodal values:

C+ �
K∑

r=1

ϕr Ξ̃r ,

C− �
K∑

r=1

ϕrΛr Fr ,

(29)

where Ξ̃r = Ξr ,r is evaluated from the nodal value of the distribution function Fr .
As a result, the computational cost of (ϕs, C)Δi

in Eqs. (22) and (23) is reduced to

O
(
KMelM2

qua N̄
3 log N̄ + K 2Mel N̄ 3

)
, that is, by K times; this is considerable especially

when high-order approximation polynomials are employed. For instance, nominally, 14 times
less cost is expected when k = 4 in 2D problem on triangular mesh.

It is interesting to note that, in the recent paper where an explicit DG Boltzmann solver
has been developed, the singular value decomposition is proposed to reduce the computa-
tional cost [35]. The singular value decomposition is pre-computed to the K × K matrix for(
ϕs, ϕpϕr

)
. Thus, the computational cost for the loops in Eqs. (22) and (23) can be reduced to
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O
(
K 2Mel N̄ 3

)
. However, the computational complexity for the collision operators by FSM

[Eq. (21)] remains unchanged and always consumes the majority of CPU time; thus this
saving may not be in the order of magnitude.

Comparing Eq. (29) to Eqs. (22) and (23), it is found that the error induced by the
reduced calculation is:

∣∣
∣
∣
∣
∣

K∑

p=1

K∑

r=1

ϕpϕr
(
Ξp,r − ΛpFr

) −
K∑

r=1

ϕr
(
Ξr ,r − Λr Fr

)
∣∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
∣

N/2−1∑

j=−N/2

N/2−1∑

l+m= j
l,m=−N/2

(

f̄ l f̄ m −
K∑

r=1

ϕr F̄
l
r F̄

m
r

)

β (l,m) exp
(
ıξ j · v

)

∣
∣
∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

N/2−1∑

l=−N/2

N/2−1∑

m=−N/2

(

f̄ l f̄ m −
K∑

r=1

ϕr F̄
l
r F̄

m
r

)

β (l, l) exp
(
ıξ l · v

)
exp

(
ıξm · v

)
∣
∣
∣
∣
∣
∣

(30)

which is small when the variation of distribution function within a spatial element is not
significant. Note that Eq. (30) is obtained by simple algebraic calculus using the relations
given by Eqs. (7)–(10). In Sect. 6, we are going to valid this approximation numerically. The
scheme with full calculation of collision terms (22) and (23) is labeled as ‘DG-FULL’, while
the one using reduced calculation (29) is labeled as ‘DG-RED’.

5 Sweeping Technique to Solve Linear Systems

Nowwe present the strategy to solve the linear systems resulting from the DG discretization.
In the linear equations (25) on each spatial element Δi , the unknown distribution function
on neighboring element appears in Bext, j ′ , where the usual treatment in implicit DG is to
assemble the linear systems over all the spatial elements and solve a large sparse linear
equation to determine the unknowns simultaneously. However, this requires huge memory
and is prohibitively expensive in solving the Boltzmann equation, since we have to solve
not one but a large number (e.g. several ten thousands) of large sparse linear systems. The
matrix-free technique might be useful to improve the scheme [18]. In this paper, a more
intuitive and simpler strategy is adopted. Note that similar algorithms have formed the basis
of many modern radiation transport codes [41].

Due to the fact that the upwind flux is applied, it is important to notice that only the
distribution function on neighboring elements in the upwind side appears in Bext, j ′ . Thus,
the solution of f j ′ on Δi can be obtained by solving the small linear system (25), once fext
on the upwind side is known, or it is equipped with prescribed boundary conditions. Hence,
starting from the element at the inflow boundary of computational domain, we can obtain the
solution of f j ′ sequentially for all the elements.

This sweeping technique, which does not require to assemble large sparse linear system,
relies on finding an ordering of the spatial elements, which is determined by the character-
istic wind direction (i.e. the direction of molecular velocity). The key to ensuring feasible
implementation of the sweeping technique in solving the Boltzmann equation is that, the
discrete molecular velocity is fixed in the governing equations. Hence, we can find and store
the spatial element ordering for each discrete velocity immediately after discretization and
before the first iteration.
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(a) (b)

Fig. 1 Schematic demonstration for determination of the spatial element ordering with respect to a given
molecular velocity. a Line mesh for 1D problem. b Triangular mesh for 2D problem

For a given discrete molecular velocity v j ′ , the topological ordering is easily found in
1D cases. As shown in Fig. 1a, a 1D computational domain [0, H ] is parallel to the x1 axis.

When v
j ′
1 > 0, starting from the boundary at x1 = 0, the spatial ordering is of ascending

order in index i , while when v
j ′
1 < 0 the spatial ordering has a descending order in i

starting from the boundary at x1 = H . For higher dimensional problem, we assume that
the spatial grid is paved with convex elements and the element ordering is acyclic. A simple
topological sorting algorithm [46] is applied: gradually removing elements that have no
incoming flux from the elements left in the computational domain, placing them in the
ordering, until no element remains. Figure 1b illustrates the schematic demonstration for
the sorting procedure, where the ordering starts from the element Δ11 since it has only one
inflow boundary located at the boundary of the computational domain. After removing Δ11,
either element Δ10 or Δ12 will be put into the ordering, because there is no flux flowing
from the elements left in the computational domain to these two elements. Note that the
sequence of Δ11 and Δ12 in the ordering is interchangeable, since they do not share any
common interface. The pseudo-code of the algorithm can be found in Ref. [46] (Algorithm
3.2.2).

In Sect. 4, we have mentioned that solving the linear systems is one of the major
costs in computational resources. On the basis of sweeping technique, if we use LU-
fabrication-based direct solver to solve the linear equations, the computational cost is
O

(
2/3K 3Mel N̄ 3 + 2K 2Mel N̄ 3

)
, since we have Mel N̄ 3 systems and each has a coefficient

matrix of rank K . Note that we have assumed that the number of discrete velocities in
each direction is N̄ . In the ITR-MEAN scheme (13), the cost to solve linear equations
can be reduced to O

(
2K 2Mel N̄ 3

)
due to the fact that the coefficient matrix Ai, j ′ remains

unchanged during the iterations and LU-decomposition can be calculated and stored before
the first iteration. The computational cost for LU-decomposition is roughly K/3 times of
that for substitution in solving the linear equations, which becomes large as the grid density
and/or the order of approximating polynomial increases. For example, when k = 4 on trian-
gular mesh, the computational complexity of LU-decomposition is 4 times larger than that
of substitution. Therefore, computing LU-decomposition before iteration and only executing
substitution during iteration can further save CPU time.

6 Numerical Results and Discussions

The DG method with k up to 4 is applied to solve the Boltzmann equation with full collision
operator. The convergence criterion for the iterative schemes described above is that the
global relative residual in the flow property Q between two successive iteration steps:
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Table 1 Flow properties across
normal shock waves

Ma = 2.05 Ma = 9.0
Upstream Downstream Upstream Downstream

T 1.0 2.144 1.0 26.185

ρ 1.0 2.334 1.0 3.857

u1 1.871 0.802 8.216 2.130

RQ =
∣
∣∫

Δ

(Q(t+1) − Q(t)
)
dx

∣
∣

| ∫
Δ
Q(t)dx| , (31)

is less than a threshold value ε.
The following tests are performed in double precision on aworkstationwith IntelXeon-E5-

2680 processors and 128GBRAM.During iteration, we call the routines in IntelMathKernel
Library (MKL) to conduct LU-fabrication and solve linear equations. For the calculation of
collision kernel β (l,m), the trapezoidal rule is applied and we set Mqua = 5 in Eq. (11)
that is adequate to maintain the spectral accuracy of FSM [72]. Due to the fact that we only
consider 1D and 2D flows, symmetry of the distribution function in the third (v3) direction
allows us to reduce the computational cost of Eq. (11) by half, that is, θ can be limited to the
range of [0, π/2]; more details can be found in Ref. [70].

6.1 One-Dimensional Normal ShockWave

We first simulate the normal shock wave problem to assess the accuracy and efficiency of the
proposed method for steady-state solution of the Boltzmann equation. Due to the absence
of boundary effects, the flow is ideal to test the accuracy of DG discretization for streaming
and the FSM approximation for the Boltzmann collision operator in capturing highly non-
equilibrium phenomena, especially to validate the scheme with reduced DG calculation
as described in Sect. 4. The argon gas is considered with Mach numbers Ma = 2.05 and
Ma = 9.0.We use the same parameters as those in Alsmeyer’s experiments [2]: the upstream
density ρ0 = 1.067 × 10−4 kg/m3 and temperature T0 = 300 K, corresponding to the mean
free path and collision frequency of hard sphere molecules as λ̄ = 1.098 × 10−3 m and
ν̄ = 3.633 × 105 s−1, respectively. For all the DG results, the length scale is normalized
with H = λ̄ resulting in Kn = 5π/16. The 1D computational domains Δ in the x1 direction
are [−20, 20] and [−30, 30] for Ma = 2.05 and Ma = 9.0 cases, respectively, which
are partitioned by line elements with uniform length. The dimensionless up/downstream
conditions normalized by the upstream properties are listed in Table 1. Initially, the domains
x1 ≤ 0 and x1 > 0 are setup by the equilibrium distributions at upstream and downstream
conditions, respectively. The implicit iteration scheme (14) with local collision frequency. i.e.
ITR-LOC is applied. Iteration is terminated when max{RT , Rn, R|u1|} < 10−5, see Eq. (31).
When Ma = 2.05, the truncated velocity domain [− 8, 8]3 is divided into 323 uniform
points, while when Ma = 9.0, the velocity domain [− 30, 30]3 is divided into 96× 64× 64
uniform points. The same number of uniform frequencies are used in the approximation of
full Boltzmann collision operator.

Numerical tests show that by using the sweeping technique, the implicit DG method is
stable without any limiter in solving the 1D normal shock structure. Figure 2 illustrates the
DG results of normalized flow velocity, density and temperature, compared with the DSMC
results and experimental data [2]. The DSMC results presented here are computed using the
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(a) (b)

Fig. 2 Profiles of normalizedflowvelocity ũ1 = u1−u1,R
u1,L−u1,R

, density ρ̃ = ρ−ρL
ρR−ρL

and temperature T̃ = T−TL
TR−TL

for normal shock wave of argon gas at a Ma = 2.05 and b Ma = 9.0. The subscripts ‘L’ and ‘R’ denote
the properties in upstream and downstream, respectively. The DG-RED solutions are obtained with k = 4,
Mel = 16. The ITR-LOC scheme (14) is applied in implicit iteration

code developed and verified in Ref. [62]. In order to ensure accuracy of the DSMC method,
the cell sizes and time steps are set to be ∼ 0.13λ̄ and ∼ 0.12/ν̄, respectively. The average
number of molecules per spatial cell is about 50. About 30,000 iterations are needed to reach
the steady-state solutions. To obtain smooth results, macroscopic flow properties are sampled
over another 100,000 steps. For comparison, the viscosity index in both methods are set as
ω = 0.81. The DG results are obtained using 4th-order approximating polynomial on 16
elements, which agree well with those of DSMC simulation (the profiles from the DG-FULL
scheme are not shown, since they overlap with the ones of DG-RED). We also compare the
DG solutions for density with the experimental data. For Ma = 2.05, the agreement is good,
although slight discrepancy can be observed in the downstream side of the shock wave. For
Ma = 9.0 where the non-equilibrium effect is strong, the DG solution agrees well with the
DSMC one. However, disagreement between the DG (DSMC) solutions and experimental
data enlarges, where the density changesmore rapidly in the experiment. Actually, the profiles
in high Mach number flow are more sensitive with respect to the value of viscosity index ω.
The works in Refs. [66,75] suggest that setting ω to 0.7 the Boltzmann solver or DSMC can
produce results close to the experimental measurements. Hence, we include the DG-RED
solution with ω = 0.72 obtain an improved agreement, see dash lines in Fig. 2b.

To further validate the DG-RED scheme, we compare the marginal distribution functions∫
f dv2dv3 at different locations of the shock wave with those obtained using the DG-FULL

scheme. The profiles are plotted in Fig. 3. To ensure the accuracy of DG-FULL results,
we have doubled the number of discrete velocity and frequency points in the longitudinal
direction. It is demonstrated that in low Mach number flow, the velocity distribution func-
tions are close to the corresponding equilibrium (Gaussian) distribution. As Mach number
increases, the distribution functions within the shock wave structure greatly deviate from
the Gaussian profile. The comparison shows that, even for highly non-equilibrium flow, the
DG-RED scheme can produce correct solution, so that the numerical error brought by the
reduced calculation of collision operator is negligible.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Comparison of the marginal distribution functions
∫

f dv2dv3/ρ from the DG-RED and DG-FULL
schemes: first row is ones for Ma = 2.05 presented at a ρ = 1.197, b ρ = 1.468, c ρ = 1.766 and d
ρ = 1.991; second row is ones for Ma = 9.0 presented at e ρ = 1.423, f ρ = 1.943, g ρ = 2.543 and h
ρ = 3.123. For DG-FULL, the molecular velocity domains [− 8, 8]3 and [− 30, 30]3 are uniformly divided
into 64× 32× 32 and 192× 64× 64 points for Ma = 2.05 and 9.0, respectively. The ITR-LOC scheme (14)
is applied in implicit iteration

Another important property of a shock wave with Ma >
√
9/5 in a monatomic gas is the

overshoot of temperature associated with the longitudinal component of thermal velocity,
Tx , which could be larger than the gas temperature behind the front of shock due to the non-
equilibrium in translational energies of longitudinal and transversal directions. The analytical
form of Tx is related to density ρ as [77]:

Tx,an = 1

3

[(
5Ma2 + 3

)

ρ
− 5

(
Ma

ρ

)2
]

. (32)

Based on Tx , we compare the convergence behavior ofDG-REDandDG-FULL schemeswith
respect to various orders of approximating polynomials k and numbers of spatial elements
Mel. The relative L2 error of Tx that is evaluated as

E =
∫
Δ

(
Tx − Tx,an

)2 dx1∫
Δ
T 2
x,andx1

, (33)

the number of iteration steps, and the total CPU time are listed in Table 2.
All the tests are conducted on single processor, and the internal parallelism forMKL func-

tions is not activated. It is shown that for each k, as the number of elements increases, errors
of Tx gradually converges to 0.016% and 0.036% for Mach numbers of 2.05 and 9.0, respec-
tively. Higher order approximating polynomial requires fewer elements to obtain converged
results. The numbers of iterative steps to reach the steady-state solutions also converge to
fixed values of around 201 and 225 for Mach numbers of 2.05 and 9.0, respectively. There-
fore, compared to the lower-order scheme, the higher-order discretization consumes less
CPU time to obtain solution with the same order of accuracy. For example, for Ma = 2.05,
the DG-FULL scheme with k = 4 cost about 30% less CPU time to produce solution with
E = 0.016% on the mesh of 16 segments, compared to the one with k = 3 that obtains the
same level of accuracy on 32 segments.
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It is found that the DG-RED scheme can preserve these convergence properties. That
is, by using the same order of approximating polynomial on the same mesh, DG-RED and
DG-FULL require the same number of iterative steps to obtain solution of the same order of
accuracy. However, DG-RED can significantly save the computational cost in terms of CPU
time. Higher degree of approximating polynomial leads to more saving. For example, when
Ma = 9.0, to obtained solution of E = 0.036%, both schemes need 64, 32 and 16 spatial
elements for k = 2, 3 and 4, respectively, and the CPU time consumed by DG-RED is about
50%, 41%, and 36% of that by DG-FULL.

6.2 Hypersonic Flow Past a Square Cylinder

Now we consider a 2D high-speed flow. The DG-RED scheme of k = 4 is applied to
compute the hypersonic flow past a square cylinder having a dimension of 1 × 1 and a
constant wall temperature of Tw = 1.0. The free stream has dimensionless temperature
and density of T0 = 1.0 and ρ0 = 1.0. The Mach number and Knudsen number in the
free stream are 5.0 and 0.13, respectively. As shown in Fig. 4a, the argon gas of viscosity
index ω = 0.81 moves from left to right along the x1 direction. The computational domain
is chosen with extension up to 1.95, 7.5 and 5.5 away from the cylinder in the upwind,
downstream and x2 directions, respectively. Due to symmetry, only half of the flow field
is considered. The boundary conditions and triangular spatial meshes are also illustrated in
Fig. 4a. In addition to the full-diffuse solid surface, the lower boundaries parallel to x1 are
symmetric boundaries, while other boundaries are set as hypersonic inlet/outlet boundaries
where the velocity distribution function is the equilibrium distribution at the free-stream
condition. 1490 unstructured triangles are employed to discretize the computational domain,
with refinement near the solid surface. The truncated molecular velocity space [−13, 13]3 is
discretized by 48× 48× 48 equidistant points, and the same number of uniform frequencies
are used in the evaluation of full Boltzmann collision operator. The flow field is initialized by
the free-stream condition, and the ITR-LOC scheme (14) is applied, which needs 346 steps
to reach the convergence criterion of max{RT , Rρ, R|u|} < 5 × 10−5. The test is run on 28
processors using OpenMP for parallelism and consumes about 24.6 h of wall time.

At the very beginning of iteration, strong discontinuity appears in the upwind side of the
square cylinder due to intense stagnation effect of gas flow, and the DG scheme can generate
spurious oscillation which may cause the approximated distribution functions to be negative.
As a consequence, the loss term will become the gain term and the iteration will lead to
unphysical blowup. To tackle this problem, instead of using any nonlinear limiter as one
usually does, we take absolute value to the negative degrees of freedom after solving the
linear systems at each iterative step. Numerical test shows that this simple treatment does
not destroy the accuracy of DG discretization but does guarantee its stability. Note that the
treating of taking absolute value to negative solution might lose mass conservation, however
it is not important in open systems where the total mass in the computational domain is not
a conserved quantity.

Contours of temperature, horizontal velocity and vertical velocity are illustrated in Fig. 4b–
d. The white lines with background are the DG-RED solutions, while the red dashed contour
lines are the DSMC results in Ref. [14]. Note that the Knudsen number in Ref. [14] is
2 (7 − 2ω) (5 − 2ω) /15π times the unconfined Knudsen number in this paper. Comparison
between the DG-RED solutions and DSMC ones on the distributions of density, temperature
and horizontal velocity along the symmetric line in front of the stagnation point are shown
in Fig. 5. It is found that due to the stagnation effect from the static cylinder to the gas
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(a) (b)

(c) (d)

Fig. 4 Hypersonic flow of Ma = 5 and Kn = 0.13 past a square cylinder. a Schematic for computational
domain, boundary condition and unstructured triangularmeshes.bTemperature contours. cHorizontal velocity
contours. d Vertical velocity contours. The white solid contour lines with background illustrate the solutions
from DG-RED of k = 4, where the molecular velocity domain [− 13, 13]3 is discretized by 48 × 48 × 48
equidistant grid points. The red dashed contour lines are the DSMC results [14] (Color figure online)

ρ

(a) (b) (c)

Fig. 5 Hypersonic flow of Ma = 5 and Kn = 0.13 past a square cylinder. Profiles of a density b temperature
and c horizontal velocity along the symmetric line in front of the stagnation point. Solid lines are the solutions
from DG-RED of k = 4, where the molecular velocity domain [− 13, 13]3 is discretized by 48 × 48 × 48
uniform grid points. Symbols are the DSMC results [14]

flow, the flow density increases about 25 times within 10 (free-streaming) mean free paths
when approaching to the cylinder, and the bulk horizontal velocity drops to zero. Since the
isothermal wall condition is applied, the flow temperature first increases to its maximum
value of 8.7 at about 5 mean free paths away from the stagnation point and then decreases to
1.45 at the solid wall.

Figure 6 illustrates the distributions of normal stress Pn and shear stress Pt along the
surfaces of the square cylinder, where Pn = nw · P · nw and Pt = nw · P · tw with nw
and tw denoting the outward unit normal vector and tangential vector of the solid surface,
respectively. The largest Pn is at the surface in the upwind side where the normal momentum
flux is large, while the shear stress gradually increases along that surface as the bulk vertical
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(a) (b)

Fig. 6 Hypersonic flow of Ma = 5 and Kn = 0.13 past a square cylinder. The distributions of a normal stress
and b shear stress along the surface of cylinder. The horizontal axis represents the distance along the surface
of the square, starting from the stagnation point in a counter-clockwise direction. Solid lines are the DG-RED
solutions and symbols are the DSMC results [14]

velocity increases. Both Pn and Pt vary slightly along the top surface and the lateral surface
in the weak region. Figures 4, 5 and 6 demonstrate the good agreement between the DG and
DSMC results.

6.3 2D Lid-Driven Cavity Flow

By comparing with the DSMC results, a 2D low-speed flow in a square cavity driven by its
top lid is used to compare the performance of DG Boltzmann solvers and a Boltzmann solver
using the second-order FDM to approximate the spatial derivative [69]. The wall temperature
is set as the reference temperature T0 = 273 K. The speed of the driven lid is 50 m/s. The
flow gas is argon with a viscosity index of 0.81. The gas flow is initially stationary at T0
with Kn = 1, where the characteristic length H is chosen to be the side length of the square
cavity. The computational configuration for DSMC can be found in Ref. [36].

For deterministic solution, the truncated molecular domain is [−6, 6]3. The DG and FDM
solvers utilize the same FSM to evaluate collision terms in frequency domain, which is
discretized with 32 × 32 × 24 equidistant frequencies. For the discretization of molecular
velocity, non-uniform points are used for v1 and v2, while uniform discrete velocities are
used in the third direction. The non-uniform discretization with refinement around v1(2) = 0
is efficient to calculate low-speed flow especially at large Knudsen number, where the distri-
bution function changes rapidly within a narrow area around the origin in v1 and v2 directions
[61]. For spatial discretization, uniform triangular mesh is used in the DG method, as shown
in Fig. 7a, while FDM uses equidistant grid points in the x1 and x2 directions. Determination
on the numbers of spatial elements and discrete velocities is a trivial task. General speaking,
flow with small value of Kn needs relatively large number of spatial elements to ensure that
the numerical dissipation is much smaller than the physical viscosity that is small in the
near-continuum flow regime, while highly rarefied flow requires a large number of discrete
velocities to resolve significant variations and/or discontinuities in the velocity distribution
function. Moreover, the spatial and velocity grids have ‘contrary’ effects, where finite dis-
cretization of the velocity space tends to capture discontinuities, whereas limited spatial
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Fig. 7 Comparison of DG-RED and DSMC on square cavity flow at Kn = 1.0 driven by a moving lid with
the speed U0 = 0.148. DG-RED solutions are obtain with k = 4 on 72 uniform triangles. a typical triangular
meshes; b, c temperature contours when the molecular velocity domain [− 6, 6]3 is discretized by 36×36×24
and 108 × 108 × 24 grid points in DG-RED, respectively. White solid lines with background indicate the
solutions of DG-RED, while red dashed lines are the DSMC results. The ITR-LOC scheme (14) is applied in
implicit iteration (Color figure online)

discretization tends to smooth flow field due to artificial diffusion. Incompatible spatial and
velocity grids can lead to the emergence of ‘ray effect’, which causes deterministic solution
oscillating around its mean value [12,17], see Fig. 7b. To overcome this shortcoming, the
velocity grid should be fine enough so that error induced by the ray effect is small, which
can be restrained by the numerical dissipation [17].

Temperature contours from the DG-RED scheme of k = 4 and Mel = 72 (highly resolved
in the spatial space) are compared with the DSMC results in Fig. 7. Results in Fig. 7b, c are
obtained with 36 × 36 × 24 and 108 × 108 × 24 velocities, respectively. It is observed that
relative coarser velocity grid produces temperature contour with violent fluctuations, and
refinement in the velocity discretization can improve the accuracy significantly. Besides, the
DG solver with higher order of approximating polynomial is more likely to suffer from the
ray effect. This is mainly due to the fact that, compared to lower-order scheme, higher-order
one can obtain more accurate result on same spatial grid so that the numerical dissipation is
relatively small and the ray effect becomes more pronounced.

Further comparison on the results ofDG-REDandDSMC is illustrated in Fig. 8 in terms of
the horizontal (vertical) flow velocity along selected vertical (horizontal) lines. The DG-RED
results are in good agreement with those of DSMC.

In Table 3, we list the relative L2 error of velocity magnitude |u|, the number of iterations
to reach the convergence criterion max{RT , Rn, Ru} < 10−5, as well as the total CPU time
cost for DG-FULLwith ITR-LOC,DG-REDwith ITR-LOC andDG-REDwith ITR-MEAN.
In the ITR-MEAN iterative scheme (13), the mean collision frequency is set as ν̄ = 1.4 for
this specific flow. For all the cases, the molecular velocity domain [−6, 6]3 is discretized by
72× 72× 24 grid points. The errors are calculated in reference to the DSMC results, which
are obtained at 60 × 60 equidistant points x p in the computational domain. The errors are
evaluated as

E =
√∑ (|u (

x p
) |DG − |u (

x p
) |DSMC

)2
/
∑

|u (
x p

) |2DSMC, (34)

where the DG solution at any point x p can be easily obtained through polynomial approx-
imation. All the tests are conducted on single processor. It is shown that, for each order of
approximating polynomial, the three schemes can produce solution with the same accuracy
on the same spatial mesh. The iterative scheme using local collision frequency can obtain the
steady-state solution within 21 steps, no matter which DG calculation (DG-FULL or DG-
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(a) (b)

Fig. 8 Comparison of DG-RED and DSMC on square cavity flow at Kn = 1.0 driven by a moving lid
with the speed U0 = 0.148. a normalized horizontal flow velocity u1/U0 along vertical lines at different
locations; b normalized vertical flow velocity u2/U0 along horizontal lines at different locations. The DG-
RED solutions are obtainedwith k = 4 and 72 triangles. Themolecular velocity domain [− 6, 6]3 is discretized
by 108 × 108 × 24 grid points. The ITR-LOC scheme (14) is applied in implicit iteration

RED) is applied. Thus, due to the reduction of computational complexity in calculation of the
Boltzmann collision operator, DG-RED cost less CPU time than DG-FULL. Equipped with
the chosen mean collision frequency, the ITR-MEAN iterative scheme (13) uses 17 steps to
reach the steady-state solution. Since it does not require LU-decomposition during iterations,
the scheme combining DG-RED and ITR-MEAN can further reduce the computational cost.
For example, with k = 4 and Mel = 18, to obtain a solution with the error in velocity mag-
nitude less than 0.014, DG-RED plus ITR-MEAN costs about 50% and 92% less CPU time
than that of DG-RED with ITR-LOC and DG-FULL with ITR-LOC, respectively.

We also list the error of velocity magnitude, number of iterations and CPU time for FDM
in Table 4. Uniformly distributed points are employed to discretize the spatial space. Thus,
the computational domain is partitioned by rectangular elements and flow properties are
evaluated at the vertices of rectangles. Note that in the estimation of the error in velocity
magnitude, u

(
x p

)
may not be fixed at discrete grid points; then it is obtained through linear

interpolation using the four values at vertices of the grid cell where the point x p is located.
The FDM solver also uses 21 steps to obtain steady-state solutions, since the ITR-LOC
iterative scheme (14) is employed. For comparison of DG and FDM, we find that the DG
discritization is more efficient. For instance, the FDM solver predicts solution with error in
|u| of 0.015 on the spatial grid with 71 × 71 grid points, while the DG scheme achieves
the same level of accuracy on 50 and 18 triangles for k = 3 and 4, respectively. However,
the DG method with k = 3 and full calculation in the collision terms [Eqs. (22), (23)] cost
more CPU time than the FDM solver. This is because, although the computational cost for
the Boltzmann collision operator in DG-FULL with k = 3 and Mel = 50 (∝ MelK 2) and
in the FDM with Mp = 71 × 71 (∝ Mp) is similar, the DG scheme requires additional time
to solve linear equations. As a consequence, only the DG-RED scheme can preserve the
efficiency of DG in terms of CPU time. Equipped with the ITR-LOC iteration (14), to obtain
solution with error in |u| of 0.015, the DG-RED solvers of k = 3 and 4 are about 4 and 7
times faster than the FDM. The ITR-MEAN iteration (13) can further boost its efficiency,
where the DG-RED solvers of k = 3 and 4 can be 6 and 13 times faster than the FDM.
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Table 3 Comparisons between DG-FULL with the ITR-LOC iteration, and DG-RED with ITR-LOC as
well as ITR-MEAN in the lid-driven square cavity flow with Kn = 1.0, in terms of the relative L2 error
E (34), the number of iterations (Itr denotes the number of iteration steps to reach the convergence criterion
max{RT , Rρ, R|u|} < 10−5), and the CPU time tc. The molecular velocity domain [− 6, 6]3 is discretized
by 72 × 72 × 24 grid points

k Mel DG-FULL + ITR-LOC DG-RED + ITR-LOC DG-RED + ITR-MEAN

E Itr tc (h) E Itr tc (h) E Itr tc (h)

1 32 0.102 21 0.044 0.102 21 0.024 0.102 17 0.018

50 0.080 21 0.068 0.080 21 0.038 0.080 17 0.029

72 0.065 21 0.100 0.065 21 0.056 0.065 17 0.042

98 0.054 21 0.258 0.054 21 0.077 0.054 17 0.059

2 32 0.039 21 0.154 0.039 21 0.058 0.039 17 0.043

50 0.029 21 0.244 0.029 21 0.080 0.029 17 0.059

72 0.023 21 0.457 0.023 21 0.125 0.023 17 0.088

98 0.019 21 0.895 0.019 21 0.173 0.019 17 0.126

3 18 0.025 21 0.222 0.025 21 0.056 0.025 17 0.033

32 0.019 21 0.551 0.019 21 0.120 0.019 17 0.082

50 0.014 21 0.950 0.014 21 0.180 0.014 17 0.117

72 0.012 21 1.078 0.012 21 0.272 0.012 17 0.190

4 8 0.024 21 0.219 0.024 21 0.044 0.024 17 0.023

18 0.014 21 0.696 0.014 21 0.111 0.014 17 0.057

32 0.011 21 1.321 0.011 21 0.234 0.011 17 0.143

50 0.008 21 2.013 0.008 21 0.349 0.008 17 0.224

Table 4 Performance of FDM
combining the ITR-LOC
iteration (14) for the solution of
lid-driven square cavity flow at
Kn = 1.0

Mp E Itr tc (h) Mp E Itr tc (h)

312 0.052 21* 0.159 612 0.018 21 0.611

412 0.046 21 0.282 712 0.015 21 0.845

512 0.028 21 0.433 812 0.016 21 1.065

Mp is the number of discrete points in the spatial space. E is the relative
L2 error of velocity magnitude |u| compared with the DSMC results. Itr
denotes the number of iteration steps to reach the convergence criterion
max{RT , Rρ, R|u|} < 10−5. tc is the total CPU time. The molecular

velocity domain [− 6, 6]3 is discretized by 72 × 72 × 24 non-uniform
grid points
*In this case, solution only converges to residual of 1.2 × 10−5 due to
round-off errors

Although higher-order FDM could achieve better efficiency, it needs more computational
effort since stencils involving large numbers of points are required. Also, it has difficulty to
handle complex geometries.

6.4 2D Flow Induced by a Hot Micro-beam in a Rectangular Chamber

We then consider the performance of DG method in the simulation of low-speed rarefied gas
flows insidemicro-channel. As depicted in Fig. 9a, we consider a 2D rarefied gas flow induced
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(a) (b)

Fig. 9 The micro gas flow around heated beam in a rectangular chamber: a geometry and b schematic of the
triangular mesh

by a hot micro-beam with a thickness of 2 µm and a width of 4 µm, which is encompassed
in a cold rectangular chamber with a dimension of 10 µm×8 µm and a wall temperature of
500 K. The beam with a temperature of 300 K is placed 1 µm away from the left and bottom
walls of the enclosure.Gas is filled between the beamand chamber.Unlike the continuumflow
where the flow velocity is zero and the temperature is governed by Fourier’s heat conduction
law, at rarefied condition, the temperature inhomogeneity induces anisotropic momentum
transfer that in turn produces pressure gradient and bulk gas flow. Due to the asymmetric
geometry, momentum fluxes impinging on the beam surface are unbalanced, giving rise to
a net Knudsen force [47,52], which can be exploited for microstructure actuation and gas
sensing [59]. Previous researches have shown that the thermal edge flow occurring near the
boundary with sharp corners plays a critical roles in formation of the Knudsen force [58,79].

The DG-RED scheme with k = 4 is applied to solve the rarefied gas flow using the
ITR-LOC iteration (14). The truncated molecular velocity is set as [− 6, 6]3. 96 non-uniform
velocity points are used to discretize v1 and v2, while 24 uniform points are used for v3. For
evaluation of collision terms, 32× 32× 24 equidistant frequencies are employed. Figure 9b
illustrates the schematic of the unstructured triangular meshes, where more triangles are
placed near the micro-beam. We first consider flows at Kn = 0.13, 1.30 and 12.96. The
Knudsen numbers are calculated using T0 = 400 K and H = 1 µm. The total iterative steps
and the CPU time to obtain the steady-state solutions vary with the Knudsen number. For the
same spatial and velocity discretization, the smaller the Knudsen number, the more iterative
steps thusmoreCPU time are required. To obtain the solution of Kn = 12.96 on 881 triangles,
84 steps are needed to reach the convergence criterion of max{RT , Rρ, R|u|} < 10−5, which
takes 4.3 h of wall time on 12 processors (OpenMP for parallelism).

Figure 10 shows the temperature contours and streamlines. It is observed that notice-
able curls that originate at the corners of the beam emerge in the temperature contours at
highly rarefied condition (Kn = 12.96). However, in small Knudsen number flow, sufficient
intermolecular collisions gradually smooth these curls when they propagate to the chamber.
When the Knudsen number is small, at each surface of the beam, thermal edge flows drive gas
molecules from the corners to the surface centers and form a relatively high pressure region
therein. Then, the high pressure promotes gas flowing to the chamber. Due to the confine-
ment of chamber walls, gas molecules finally return to the corners of the beam. Hence, eight
localized vortices are observed in the flow field. When Kn increases to 1.30, 3 more vortices
are developed with one in the lower-right corner of the chamber and two in the upper-left
corner of the chamber. As the degree of gas rarefaction further increases, the vortex in the
lower-right corner of the chamber gradually absorbs the localized vortices near the right and
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(a) (b) (c)

Fig. 10 Temperature contours and streamlines in micro flow of argon gas with ω = 0.81. a Kn = 0.13; b
Kn = 1.30; c Kn = 12.96. The molecular velocity domain [−6, 6]3 is discretized by 96 × 96 × 24 non-
uniform grid points. 1290 triangles are used for flows of Kn = 0.13 and Kn = 1.30, while 881 triangles for
case of Kn = 12.96

(a) (b)

Fig. 11 a Normal stress and b magnitude of heat flux along the surface of hot beam. Lines are the DG-RED
solutions and symbols are the DSMC result in Ref. [78]. The horizontal axis represents the distance starting
from the left-upper corner in a counter-clockwise direction. The gas is argon with ω = 0.81

bottom sides of the beam,which forms a large counter-clockwise vortex. Besides, the vortices
in the region above the beam also start to merge together.

Figure 11 illustrates the normal stress (pressure) Pn and the magnitude of heat flux |Q|
distributed on the surfaces of the hot beam, where Pn is calculated as Pn = nw · P · nw
with nw denoting the outward unit normal vector of the beam surface. The DSMC solutions
in Ref. [78] are included for comparison, where good agreement can be observed. It can be
seen that the more rarefied flow the larger Pn. This is due to the fact that momentum fluxes
are enhanced when fewer intermolecular collisions are involved. Moreover, heat transfer is
also strengthened by the non-equilibrium effect. The unbalance of Pn on the surfaces mainly
contributes to arising of the Knudsen force (the shear stress component is smaller than the
normal one by two orders of magnitude). It is observed that Pn on the top (right) surface of
the beam is greater than that on the bottom (left) surface, thus both the horizontal and vertical
components of the resultant force point to the negative directions of axes.

The resultant forceF acting on the hot beam and total heatH releasing from the hot beam
at Kn ranging from 0.2 to 10 are plotted in Fig. 12, where results for argon with ω = 0.81,
hard-sphere molecules with ω = 0.5 and Maxwell molecules with ω = 1.0 are compared.
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(a) (b) (c)

Fig. 12 a, b Resultant force [Fx1 ,Fx2 ]T = − ∮
∂Ωb

P · nwdϒ acting on the hot beam; c total heat H =
∮
∂Ωb

Qdϒ releasing by the hot beam. The solutions for argon ofω = 0.81, hard-sphere molecules ofω = 0.5
andMaxwell molecules ofω = 1.0 at Kn ranging from 0.2 to 10 are compared. TheDG-RED scheme of k = 4
combing with the ITR-LOC iteration (14) is applied. The molecular velocity domian [− 6, 6]3 is discretized
by 96 × 96 × 24 non-uniform grid points, and 1290 triangles are used for all Knudsen numbers

The force and heat are calculated from as

[Fx1 ,Fx2 ]T = −
∮

∂Δb

P · nwdϒ,

H =
∮

∂Δb

Qdϒ,

(35)

where ∂Δb is the surface of the beam. It is observed that the magnitude of Knudsen force first
rises and then falls. The maximum magnitude of Knudsen force occurs around Kn = 2.0.
The total heat always increases with Kn. The variation of Knudsen force can be ascribed
to the development and competition of the localized thermal flows described above. When
Kn is small, i.e. the non-equilibrium effect is insignificant, the variation of pressure on each
beam surface is small with the same magnitude, hence the Knudsen force is weak. As the
Knudsen number increases, the strength of local flows are enhanced, and the more spacious
spaces on the top and right of the beam allow formations of bigger vortices, which drive more
gas molecules from the upper- and lower-right corners of the chamber to the center of the
right surface of the beam; thus the pressure there is larger than that near the left beam surface.
On the other hand, the counter-clockwise vortex originating from the lower-right corner of
the chamber penetrates into the bottom of the beam and efficiently takes gas molecules away
from there. This causes the pressure near the bottom surface of the beam to be lower than
that on its top surface. Therefore, the magnitudes of the horizontal and vertical components
of Knudsen force both become larger. As the Knudsen number increases further, the thermal
flows are strengthened even more. The large vortex on the top surface of the beam starts to
swallow the small vortices near the upper-left corner of the chamber, while the large vortex at
the lower-right corner of the chamber begins to absorb the small vortices on the right surface
of the beam. The formations of two giant vortices release some pressure on the top and right
surfaces of the beam, thus the magnitude of Knudsen force falls down. The profiles of F and
H for ω = 0.81 always lie between the ones for ω = 0.5 and ω = 1.

6.5 2D Thermal Cavity Flow

In this section, we test the thermal cavity flow induced by temperature gradients at wall and
intend to provide accurate result for this flow that may serve as benchmark solution, when
the Knudsen numbers are Kn = 0.1, 0.5 and 1.
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(a) (b) (c)

Fig. 13 Comparison of DG-RED and FDM on the thermal cavity flow induced by the temperature gradients at
wall when Kn = 0.5. Contours of temperature T and shear stress P12 are shown in a, b, respectively, where
the solid lines with background are the solutions of DG-RED, and the red dashed lines are the FDM results.
The stream lines are presented in c. The DG-RED solutions are obtained with k = 4 and 72 uniform triangles.
The molecular velocity domain [− 6, 6]3 is discretized by 72× 72× 24 non-uniform grid points (Color figure
online)

The computational domain is a 1× 1 square, partitioned by structured triangular mesh as
shown in Fig. 7a. The left and right walls are maintained at constant temperature TC, while
the bottom and top walls have varied temperature given by:

T (x1, x2 = 0 or 1) =
{
2 (TH − TC) x1 + TC, x1 ≤ 0.5,

− 2 (TH − TC) x1 + 2TH − TC, x1 > 0.5,
(36)

where TC and TH are set as 263 K and 283 K, respectively.
The argon gas with viscosity index ω = 0.81 is initialized at the reference temperature of

T0 = 273 K. For all the cases, the molecular velocity domain is chosen as [−6, 6]3, which
is discretized by 72 × 72 non-uniform points in the v1 and v2 directions, and 24 uniform
points in the v3 direction. The corresponding frequency space, however, is discretized by
32 × 32 × 24 equidistant frequencies for the evaluation of Boltzmann collision operator.
For the verification of DG results, FDM results serve as reference solutions. In order to
ensure the accuracy of FDM, 201× 201 equidistant grid points are employed for the spatial
discretization. Further refinement of both the velocity and spatial girds would only improve
the solution by a magnitude no more than 0.5%. The DG-RED scheme with k = 4 is used to
solve the rarefied gas flow on 72 triangles. The ITR-LOC iteration (14) is applied.

Figure 13 illustrates the dimensionless temperature and shear stress contours, as well as
the streamlines for flow at Kn = 0.5. The DG-RED steady-state solution presented here
costs about 34 iterative steps and 0.96 h CPU time on a single processor. It is observed that
high flow temperatures occur near the centers of bottom and top walls due to the heating
from walls, while low temperatures appear in the four corners. The tangential temperature
gradients near thewalls lead to the thermal creep flows,where gasmolecules along the bottom
and top walls move from the colder regions to the hotter ones. Due to the confinement of
vertical walls, 4 vortexes are generated: the two at the lower left and upper right quarters
rotate counter-clockwise and the other two rotate clockwise. As a consequence, themaximum
shear stresses appear at the centers of clockwise vortices, while the minimum ones occur at
the centers of counter-clockwise vortices. The flow patterns at Kn = 0.1 and Kn = 1.0
are similar. The results for Kn = 0.1 and Kn = 1.0 costs about 140 and 22 iterative steps,
respectively, and the CPU time on a single processor is about 4.89 h and 0.63 h. It is worth
mentioning that the same case of Kn = 1.0 was calculated by a recently developed explicit
DG fast spectral Boltzmann solver, where the solutions obtained on 16 spatial elements and
24 × 24 × 24 uniform velocity gird with k = 2 cost more than 15 h on a single processor

123



   39 Page 28 of 35 Journal of Scientific Computing            (2020) 82:39 

(a) (b) (c) (d)

(c) (f) (g) (h)
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Fig. 14 Comparison ofDG-RED (solid lines) andFDM(circles) on thermal cavity flow induced by temperature
gradients at wall when Kn = 0.1. The first and third columns are flow properties along vertical lines at
x1 = 0.1, 0.2, 0.3 and 0.4, while the second and forth columns are flow properties along horizontal lines at
x2 = 0.1, 0.2, 0.3 and 0.4. The DG-RED solutions are obtained with k = 4 and 72 uniform triangles

[35]. With the same numbers of spatial elements and discrete velocities, as well as the same
order of approximating polynomial, our scheme only costs 14 seconds to obtained the steady-
state solution; thus our scheme is faster by three orders of magnitude. The efficiency of the
proposed scheme enables more complex calculations in real engineering problems.

Figure 14 illustrates the variations of temperature T , shear stress P12, horizontal (vertical)
heat fluxes Q1 (Q2) and horizontal (vertical) flow velocities u1 (u2) along selected horizontal
and vertical lines for rarefied gas flow when Kn = 0.1; those for Kn = 0.5 and Kn = 1
are plotted in Figs. 15 and 16, respectively. Due to the symmetry of flow field, the results are
only shown within the lower left quarter of the computational domain. It is found that from
the regions near solid walls to the flow field center, the gas temperature increases along the
horizontal lines, while decreases along the vertical lines. However, along both the horizontal
and vertical directions, the shear stress first drops to the local minimum values then rises
back to zero. The variations of horizontal heat flux are similar as those of shear stress, while
the changes of the vertical component of heat flux are in accordance with the variations of
gas temperature. The changes of bulk flow velocity are more complicated. Along the vertical
lines, the horizontal velocity u1 first increases to the local peaked values and then falls to
the minimums. Along the horizontal lines near the bottom wall, u1 is positive and has a
local maximum at x1 = 0.25, while in the regions away from the bottom wall, u1 becomes
negative and has a localminimumat x1 = 0.25. Similarly, near the left lateralwall, the vertical
velocity u2 is negative and gradually changes its sign and reaches the local maximal values
when approaching to the field center along the horizontal lines. For all the flow properties,
agreement between the DG-RED and FDM results is good. It is also interesting to note that,
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Fig. 15 Comparison ofDG-RED (solid lines) andFDM(circles) on thermal cavity flow induced by temperature
gradients at wall when Kn = 0.5. The first and third columns are flow properties along vertical lines at
x1 = 0.1, 0.2, 0.3 and 0.4, while the second and forth columns are flow properties along horizontal lines at
x2 = 0.1, 0.2, 0.3 and 0.4. The DG-RED solutions are obtained with k = 4 and 72 uniform triangles

as the degree of rarefaction increases, the maximum values of temperature decrease since the
intensity of gas-gas/gas-wall interactions becomes weaker. On the other hand, the maximum
heat flux |Q| occurring near the centers of the bottom and top walls becomes larger, due to
the larger temperature jump in highly rarefied gas.

7 Conclusions

In summary, we have developed a high-order discontinuous Galerkin discretization to solve
the Boltzmann equation with full collision operator. The proposed numerical scheme is based
on the classical discrete velocity method. At each discrete velocity grid points, the velocity
distribution function is approximated in piecewise polynomial spaces of degree up to 4 in
the spatial space. Concerning resolution of the Boltzmann collision operator, we rely on the
Carleman-representation-based Fourier techniques, which can preserve mass, momentum
and energy with spectral accuracy. Due to incorporation of the DG discretization and the
fast spectral method, the computational cost to evaluate the Boltzmann collision operator is

O
(
K 2MelM2

qua N̄
3 log N̄ + 2K 3Mel N̄ 3

)
, which can be significantly large when high order

approximating polynomial is used. Based on the nodal DG approximating, we have proposed
a reduced DG discretization for the collision operator, which can reduce the computational
cost by K times of magnitude.
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Fig. 16 Comparison ofDG-RED (solid lines) andFDM(circles) on thermal cavity flow induced by temperature
gradients at wall when Kn = 1.0. The first and third columns are flow properties along vertical lines at
x1 = 0.1, 0.2, 0.3 and 0.4, while the second and forth columns are flow properties along horizontal lines at
x2 = 0.1, 0.2, 0.3 and 0.4. The DG-RED solutions are obtained with k = 4 and 72 uniform triangles

Implicit iterative scheme scheme for streaming operator is employed to find the steady-
state solution. At each iterative step, the DG discretization results in a system of linear
equations for the degrees of freedomof velocity distribution functions on each spatial element.
Since the first-order upwind principle is applied to approximate fluxes on the faces of spatial
elements, the local linear equations only couple the unknowns on the immediate neighboring
elements in the upwind side. Due to the fact that the direction of molecular velocity is
fixed after discretization in the molecular velocity space, we have successfully employed
the sweeping technique to solve the local linear systems sequentially. This strategy avoids
solving large sparse linear systems for all the elements that consumes large memory and CPU
time when a large number of discrete velocities are required.

Five different test cases including hypersonic flows, as well as shear-driven and thermal-
driven low-speed flows have been presented to show accuracy and capability of the proposed
method. Several conclusions are summarized through the performance analysis:

– The implicit iterative scheme has no restriction on time step imposed by the CFL con-
dition. The DG schemes with different order of approximating polynomials can obtain
steady-state solution of the same order of accuracy within the same number of iterative
steps. Therefore, higher-order discretization needs fewer spatial elements and less CPU
time.

– Compared to the full DG discretization in the collision operator, the proposed reduced
DG approximation preserves the accuracy of the numerical scheme even for highly non-
equilibrium flow, but significantly reduces the computational cost. To obtain the results
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with the same order of accuracy, the higher degree of approximation polynomial, the
more the saving of CPU time in the reduced DG approximation.

– Based on the same fast spectral method for the approximation of the Boltzmann collision
operator, comparison with the finite difference method shows that the DG discretization
is more efficient. Equipped with the implicit iterative scheme involving global mean
collision frequency, the DG scheme can be faster than the finite difference method by
one order of magnitude.

– The implicit iterative scheme combining with the sweeping technique to sequentially
solve the local linear systems on each spatial element preserves the stability of DG
scheme. In simulating rarefied gas flow, the shock wave structure is resolved by well
refined spatial mesh so that the variation of solution within a grid cell is mild. In addition,
absolute value is taken to the negative solution of velocity distribution function to ensure
the error does not accumulate. Due to the sweeping technique, the error induced by the
DG discretization is localized and will be suppressed during iteration. As a consequence,
the proposed method can solve hypersonic flow without any complex limiter.

The developed numerical method is to be extended for the simulation of rarefied gas
mixtures straigtforwardly [74], where the velocity distribution function for each species is
governed by its own Boltzmann equation. The Boltzmann equations for all constituents
are coupled through pairwise collision operators. Thus, the computational complexity in
resolving the collision terms via FSM significantly increases as the number of gas species
increases. In such situation, the advantage of using implicit DGmethod as well as the reduced
calculation in collision operators will become more pronounced. Moreover, by incorporating
more realistic intermolecular potentials such as the Lennard-Jones potential or even the ab
initio potential based on quantum scattering [56], the developed scheme is ready to simulate
a wide range of rarefied gas problems with a high level of accuracy.
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Appendix

Here, we present details of the DG formulation for the Boltzmann equation. The linear
systems (25) to determine the solution of f j ′ on spatial element Δi are recalled here:

Ai, j ′F j ′
i + Bext, j ′ = Si, j

′
, (A.37)

for i = 1, . . . , Mel, j ′ = 1, . . . , M .

We denote F j ′
r = Fr (v j ′), Λ

j ′
p = Λp(v

j ′) and Ξ
j ′
p,r = Ξp,r (v

j ′) as values of the

corresponding variables at each discrete velocity point, and F j ′
i = [F j ′

1 , . . . , F j ′
r , . . . ]T is

the vector of degrees of freedom of f j ′ on Δi . For the ITR-LOC scheme, the coefficient
matrices are:
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Ai, j ′
sr = 1

2

(
v j ′ · n + |v j ′ · n|

)
〈ϕs, ϕr 〉∂Δi −

(
v j ′ · ∇ϕs, ϕr

)

Δi
+

K∑

p=1

(
ϕs, ϕpϕr

)
Δi

Λ
j ′
p ,

(A.38)

Bext, j ′
s =

⎧
⎨

⎩

1
2

(
v j ′ · n − |v j ′ · n|

)∑K
r=1〈ϕs, ϕ

ext
r 〉∂Δi F

j ′
r ,ext, ∂Δi ⊂ ∂Δ

1
2

(
v j ′ · n − |v j ′ · n|

)
〈ϕs, b j ′ 〉∂Δi , ∂Δi ⊂ ∂Δ

, (A.39)

Ss =
K∑

p=1

K∑

r=1

(
ϕs, ϕpϕr

)
Δi

Ξ
j ′
p,r , (A.40)

where ϕext
r denotes the supporting polynomials on the neighboring element, from which fext

is obtained. For the ITR-MEAN scheme, the coefficient matrices become:

Ai, j ′
sr = 1

2

(
v j ′ · n + |v j ′ · n|

)
〈ϕs, ϕr 〉∂Δi −

(
v j ′ · ∇ϕs, ϕr

)

Δi
+ (ϕs, ϕr )Δi

ν̄,

(A.41)

Bext, j ′
s =

⎧
⎨

⎩

1
2

(
v j ′ · n − |v j ′ · n|

)∑K
r=1〈ϕs, ϕ

ext
r 〉∂Δi F

j ′
r ,ext, ∂Δi ⊂ ∂Δ

1
2

(
v j ′ · n − |v j ′ · n|

)
〈ϕs, b j ′ 〉∂Δi , ∂Δi ⊂ ∂Δ

, (A.42)

Ss =
K∑

p=1

K∑

r=1

(
ϕs, ϕpϕr

)
Δi

(
Ξ

j ′
p,r − Λ

j ′
p F

j ′
r

)
+

K∑

r=1

(ϕs, ϕr )Δi
ν̄F j ′

r . (A.43)

In this paper, nodal shape functions are chosen as the approximating polynomials. Integrals
of the shape functions such as (ϕs, ϕr ), (∇ϕs, ϕr ),

(
ϕs, ϕpϕr

)
and 〈ϕs, ϕr 〉 can be obtained

analytically. To evaluate 〈ϕs, b j ′ 〉, the Gaussian rule is applied.
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