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One of the central problems in the study of rarefied gas dynamics is to find the steady-
state solution of the Boltzmann equation quickly. When the Knudsen number is large, i.e. 
the system is highly rarefied, the conventional iterative scheme can lead to convergence 
within a few iterations. However, when the Knudsen number is small, i.e. the flow falls 
in the near-continuum regime, hundreds of thousands iterations are needed, and yet 
the “converged” solutions are prone to be contaminated by accumulated error and large 
numerical dissipation. Recently, based on the gas kinetic models, the implicit unified gas 
kinetic scheme (UGKS) and its variants have significantly reduced the number of iterations 
in the near-continuum flow regime, but still much higher than that of the highly rarefied 
gas flows. In this paper, we put forward a general synthetic iterative scheme (GSIS) to find 
the steady-state solutions of rarefied gas flows within dozens of iterations at any Knudsen 
number. The key ingredient of our scheme is that the macroscopic equations, which are 
solved together with the Boltzmann equation and help to adjust the velocity distribution 
function, not only asymptotically preserve the Navier-Stokes limit in the framework of 
Chapman-Enskog expansion, but also contain the Newton’s law for stress and the Fourier’s 
law for heat conduction explicitly. For this reason, like the implicit UGKS, the constraint 
that the spatial cell size should be smaller than the mean free path of gas molecules is 
removed, but we do not need the complex evaluation of numerical flux at cell interfaces. 
What’s more, as the GSIS does not rely on the specific collision operator, it can be naturally 
extended to quickly find converged solutions for mixture flows and even flows involving 
chemical reactions. These two superior advantages are expected to accelerate the slow 
convergence in the simulation of near-continuum flows via the direct simulation Monte 
Carlo method and its low-variance version.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multiscale rarefied gas flows spanning a wide range of Knudsen number have been encountered in many engineering 
problems, e.g. high-altitude aerothermodynamics of space vehicles, micro-electromechanical systems, and gas transportation 
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in ultra-tight shale strata. A gas flow can be described by either the macroscopic or mesoscopic model. At the macroscopic 
level, the gas is regarded as a continuous medium and the evolution of gas system is described in terms of the spatial and 
temporal variations of the familiar flow properties such as density, velocity, pressure and temperature. The mathematical 
description of any macroscopic model is grounded in two primary aspects: 1) the conservation laws that describe how 
the mass, momentum and energy should be conserved during transport processes, and 2) the constitutive equations that 
describe how the fluxes of mass dissipation, momentum diffusion and heat conduction response to various stimuli such 
as pressure difference, gradients of temperature and velocity, and external force. The Navier-Stokes equations provide the 
conventional mathematical model for a gas as a continuum, in which the equations of conservation laws are closed by the 
famous constitutive relations: the Newton’s law of viscosity and Fourier’s law of heat conduction. However, the Navier-Stokes 
equations are only valid when the length scale of the gradients of macroscopic variables is much larger than the mean free 
path of gas molecules, i.e. the Knudsen number is far smaller than one [1]. Many other higher-order macroscopic equations 
are proposed for when the Knudsen number is larger, but none of them is able to describe the multiscale rarefied gas flows 
from the continuum to free molecular flow regimes [2].

The mesoscopic model postulates that the gas is not continuous but is composed of a finite number of molecules. The 
molecules rush hither and thither, and strike with boundary and collide with each other. The mathematical model at the 
mesoscopic level is the Boltzmann equation, which governs the evolution of one-particle velocity distribution function [3]. 
Then, macroscopic flow properties can be obtained by taking the moments of velocity distribution function. Note that the 
Boltzmann equation is applicable for the entire range of Knudsen number, as long as the gas is dilute, i.e. the molecular 
mean free path is much larger than the dimension of gas molecules.

The Boltzmann equation can be numerically solved either in discretized molecular velocity space via the discrete velocity 
method (DVM) [4], or by applying the direct simulation Monte Carlo (DSMC) method that uses a collection of simulated 
particles to represent real molecules [3]. Compared to the traditional computational fluid dynamics (CFD) techniques for 
solving macroscopic equations, the Boltzmann equation is much more expensive to be solved in terms of computation time 
and memory. This is mainly due to the following facts. First of all, additional dimensions of the molecular velocity space 
need to be discretized in DVM and particles are required to generate in DSMC. Second, since the random behaviors of gas 
molecules are modeled on length and time scales comparable to the cell size and simulation time interval, respectively, in 
order to suppress numerical diffusion errors it is suggested that the size of grid cell and time interval should be smaller 
than the mean free path and mean collision time of gas molecules, respectively [5]. As a consequence, the computational 
cost dramatically increases as the gas flow approaches the near-continuum regime. Finally, in DVM, the conventional iter-
ative scheme (CIS) to find steady-state solution converges extreme slowly for flows with low Knudsen numbers, since the 
exchange of information (e.g. perturbation in the flow field) through molecular streaming becomes very inefficient when 
binary collisions dominate [6]. Worse still, “converged” solutions are prone to be contaminated by numerical errors, e.g. 
the accumulated error from finite discrete molecular velocities [7] and the error stemming from the evaluation of Boltz-
mann collision operator, say, by the projection method [8] and the fast spectral method [9]. In DSMC, the simulation time 
also increases significantly due to this inefficient information exchange process in near-continuum flows. Note that the uni-
fied gas-kinetic scheme (UGKS) [10–14] can remove the restrictions on cell size and time step by simultaneously handling 
free streaming and collision of gas molecules. However, as the information exchange depends on the evolution of velocity 
distribution function, UGKS still needs a large number of iterations to obtained steady-state solutions for near-continuum 
flows [15,16].

There has been a tremendous growth of researches on multiscale hybrid numerical methods that combine multiple 
models defined at fundamentally different length and time scales. Specifically for the flow of interest, the continuum CFD 
methods are used in regions where the Navier-Stokes equations are valid, while methods based on the gas kinetic theory are 
applied in regions where the continuum equations fail [17–23]. However, intrinsic difficulties arise when coupling the two 
different models. First, the mechanism for continuum breakdown is unclear and the criterion to determine where the contin-
uum model is valid relies on empirical parameters that vary in different flow conditions [21]. Second, the continuum-kinetic 
coupling interface falls in the region that can be accurately modeled by the Navier-Stokes equations, so the Boltzmann equa-
tion is still employed in regions with small Knudsen number. Therefore, when DVM is used, CIS still needs lots of iterations 
to find converged solutions; when DSMC is used, the cell size and time step should be small, hence a large number of 
evolutionary steps is adopted to find converged solutions.

In recent years, the synthetic iterative scheme (SIS), which is initially developed for radiation transport process [24], has 
been extended to achieve high efficiency and accuracy in DVM, in particular with fast convergence property across the whole 
gas flow regimes [25,26]. In this scheme, the gas kinetic equation and macroscopic equations are solved simultaneously on 
the same grid in the entire domain. Since the velocity distribution function is guided by the macroscopic flow quantities 
obtained from diffusion-type equation at each iterative step, information propagates accurately and fast even when the 
Knudsen number is small. When the Knudsen number is small, the synthetic macroscopic equations asymptotically approach 
the Navier-Stokes equations. On the other hand, SIS also preserves accuracy in other flow regimes since the macroscopic 
equations contain high-order terms, derived exactly from the gas kinetic equation, to take into account rarefaction effects. 
SIS has been successfully applied to the Poiseuille flows in channels of arbitrary shapes using the Bhatnagar-Gross-Krook 
(BGK) kinetic model for single-species monatomic gases [27], and the flows of binary and ternary gas mixtures driven by 
local pressure, temperature and concentration gradients using the McCormak model [28–32]. It has also been extended to 
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solve the linearized Boltzmann equation (LBE), where the role of realistic intermolecular potential in Poiseuille, Couette and 
thermal transpiration flows has been analyzed [6,33].

It is interesting to note that the similar idea of SIS has also been used in DSMC, that is, in addition to the traditional 
DSMC, macroscopic variables are solved and updated according to macroscopic rules/equations. For instances, in the infor-
mation preservation DSMC, the information velocity is introduced to compute macroscopic velocity and shear stress, with 
the aim of removing “the statistical fluctuation source inherent in the DSMC method that results from the randomness of 
the thermal velocity” [34–36], although the rule to update the information velocity and/or other macroscopic variables is 
not exactly derived from the Boltzmann equation. On the other hand, the moment-guided DSMC is proposed to reduce 
the statistical error, where the density, velocity and temperature are updated by the five exact macroscopic equations from 
conservation laws, but with the pressure tensor and heat flux calculated from DSMC [37]. Similar idea is adopted in neutral 
gas kinetics, where, in addition to the five macroscopic equations for density, velocity and temperature, consistency terms 
are introduced to ensure that, upon convergence, solutions from the low-order macroscopic equations will be the same as 
that from the kinetic equation [38]. Although fast convergence is realized, this will cause problems since if the spatial cell 
size is not resolved the DVM solution of gas kinetic equation is contaminated by large numerical dissipation, for instances, 
see Fig. 1(d) in Ref. [16] and Fig. 6 below.

In DVM, SIS can not only asymptotically achieve the Navier-Stokes limit with fast convergence rate, but also preserve 
accuracy in high Knudsen number regimes. The critical point to develop this scheme is that the macroscopic equations 
must explicitly contain both the constitutive relations predicting the transport phenomena at the continuum level, as well 
as high-order terms taking into account rarefaction effects. To the author’s awareness, in rarefied gas dynamics SIS is still 
limited to simple flows such as Poiseuille, Couette and thermal transpiration flows, where the flow velocity is perpendicular 
to the computational domain, we refer to Ref. [25] for an example. In this paper, we will develop the general synthetic 
iterative scheme (GSIS) with the aim to find the steady-state solution of general rarefied gas flow within dozens of iterations 
at any Knudsen number. For the first step, we will consider only linearized flows in this paper.

The remainder of the paper is organized as follows. In Section 2, the LBE is introduced. In Section 3, GSIS is proposed 
for general rarefied gas flows. Numerical tests to assess the efficiency and accuracy of the proposed scheme are presented 
for stationary and periodic oscillatory problems in Sections 4, 5 and 6. The paper closes with some finial comments and 
outlooks in Section 7.

2. The linearized Boltzmann equation

In gas kinetic theory, the state of a gaseous system is described by the one-particle velocity distribution f (t, x, v). 
Evolution of the velocity distribution function to the independent variables, i.e. time t , spatial position x = (x1, x2, x3) and 
molecular velocity v = (v1, v2, v3), is governed by the Boltzmann equation [1]. When the system deviates slightly from the 
global equilibrium described by

feq(v) = π−3/2exp(−|v|2), (1)

the velocity distribution function can be linearized around feq as:

f (t, x, v) = feq(v) + αh(t, x, v), (2)

where αh(t, x, v) is the small perturbance satisfying |αh/ feq| � 1, with α being a small constant related to the amplitude of 
perturbation. The velocity distribution function h(t, x, v), however, is not necessary smaller than the equilibrium distribution 
function feq. The LBE for h(t, x, v) is:

∂h

∂t
+ v · ∂h

∂x
= L(h, feq), (3)

where the linearized Boltzmann collision operator is [39]:

L =
∫∫

B(θ, |u|)[ feq(v ′)h(v ′∗) + feq(v ′∗)h(v ′) − feq(v)h(v∗)]d�dv∗︸ ︷︷ ︸
L+

−νeq(v)h(v), (4)

and the equilibrium collision frequency is

νeq(v) =
∫∫

B(|u|, θ) feq(v∗)d�dv∗. (5)

Note that the relative velocity of the two molecules before binary collision is u = v − v∗ , and � is a unit vector along the 
relative post-collision velocity v ′ − v ′∗ . The deflection angle θ between the pre- and post-collision relative velocities satisfies 
cos θ = � · u/|u|, 0 ≤ θ ≤ π . Finally, B(θ, |u|) = |u|σ(θ, |u|) is the collision kernel, with σ(θ, |u|) being the differential 
cross-section that is determined by the intermolecular potential. In the present paper, we mainly consider the inverse 
power-law intermolecular potentials, where the collision kernel can be modeled as [39,40]
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B(|u|, θ) = |u|2(1−ω)

K
sin

1
2 −ω

(
θ

2

)
cos

1
2 −ω

(
θ

2

)
, (6)

with ω being the viscosity index (i.e. the shear viscosity μ of the gas is proportional to T ω) and K some normalization 
constants [39]. HS and Maxwell molecules have ω = 0.5 and 1, respectively. We will also consider the Lennard-Jones poten-
tial (the detailed implementation of which by the fast spectral method can be found in Ref. [41]) to demonstrate that the 
GSIS works for the LBE with general intermolecular potentials.

Note that we have presented the governing system in terms of dimensionless variables. The coordinate x is normalized 
by the characteristic flow length H , the molecular velocity v is normalized by the most probable speed vm =√

2kBT0/m, 
the time t is normalized by H/vm, and velocity distribution functions feq and h are normalized by n0/v3

m, where n0 is the 
average number density of the gas molecules, T0 is the reference temperature, kB is the Boltzmann constant, and m is the 
mass of gas molecules.

To fully determine the gas dynamics in spatially-inhomogeneous problems, the gas-surface boundary condition should 
be specified. In this paper, the Maxwell diffuse boundary condition is used: the velocity distribution function f (t, x, v) of 
the reflected gas molecules at the solid surface satisfies the following equation:

f (t, x, v) = 2
∫

v ′
n<0 |v ′

n| f (t, x, v ′)dv ′

π T 2
w

exp

(
−|v − U w|2

Tw

)
, (7)

where Tw is the wall temperature normalized by the reference temperature T0, U w is the wall velocity normalized by the 
most probable speed vm, and vn is the normal component of the peculiar velocity v − U w redirected into the gas. The 
boundary condition for h can be found with the help of Eq. (2).

The macroscopic quantities of interest including the number density ρ , bulk velocity U , temperature T , pressure p, stress 
tensor σi j and heat flux q, which are further normalized by the dimensionless constant α, can be calculated as

ρ =
∫

hdv, U =
∫

vhdv, T = 2

3

∫
|v|2hdv − ρ, p = ρ + T , (8)

σi j = 2
∫ (

vi v j − |v|2
3

δi j

)
hdv, q =

∫
v|v|2hdv − 5

2
U , (9)

where δi j is the Kronecker delta function, and i, j = 1, 2, 3 represent the three orthogonal spatial directions in the Cartesian 
coordinates.

3. The general synthetic iterative scheme

The steady state solution of the integro-differential system (3) is usually solved by CIS. Given the value of h(k)(x, v) at 
the k-th iteration step, the velocity distribution function at the next iteration step is calculated by solving the following 
equation [40–42]:

νeq(v)h(k+1) + v · ∂h(k+1)

∂x
= L+(h(k), feq), (10)

where the derivative with respect to x can be approximated by any conventional CFD schemes such as the finite difference, 
finite volume, or Discontinuous Galerkin (DG) methods [43,44], and the collision operator in Eq. (4) can be calculated by the 
fast spectral method [39,41] based on the velocity distribution function at the k-th iteration step. The process is repeated 
until relative differences in macroscopic quantities between two consecutive iterations are less than a convergence criterion 
ε .

A key parameter in the rarefied gas dynamics is the rarefaction parameter, which is defined as

δrp = H

λ
, λ = μ(T0)vm

n0kBT0
, (11)

where μ(T0) is the shear viscosity of the gas at the reference temperature, and λ is the mean free path of gas molecules. 
Alternatively, the Knudsen number is defined as

Kn =
√

π

2δrp
. (12)

CIS is efficient for highly rarefied gas flow when δrp is very small, where converged solutions can be quickly found after 
several iterations. However, the total number of iteration increases significantly with the rarefaction parameter [6,25]. This 
is due to the frequent collisions of gas molecules, which quickly smear the perturbance and hinder the fluid information 
exchange. In order to enhance the information exchange across the whole computational domain, synthetic equations for 
the evolution of macroscopic flow variables that are asymptotic preserving the Navier-Stokes limit should be developed [6].
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To this end, we first multiply Eq. (3) by 1, 2v , and |v|2 − 3
2 , respectively, and integrate the resultant equations with 

respect to v; we obtain the following equations for the evolution of density, velocity, and temperature:

∂ρ

∂t
+ ∂Ui

∂xi
= 0,

2
∂Ui

∂t
+ ∂ρ

∂xi
+ ∂T

∂xi
+ ∂σi j

∂x j
= 0,

3

2

∂T

∂t
+ ∂q j

∂x j
+ ∂U j

∂x j
= 0,

(13)

which are not closed, since expressions for the shear stress σi j and heat flux q are not known. One way to close Eq. (13)
is to use the Chapman-Enskog expansion, where the distribution function is expressed in the power series of Kn [1]: h =
Knh(1) + Kn2h(2) + · · · . When f = f (0) , we have σi j = qi = 0, and the Euler equations are recovered. When the distribution 
function is truncated at the first-order of Kn, that is, h = Knh(1) , we have

σi j = −δ−1
rp

(
∂Ui

∂x j
+ ∂U j

∂xi
− 2

3

∂Uk

∂xk
δi j

)
≡ −2δ−1

rp
∂U<i

∂x j>
, qi = − 5

4Pr
δ−1

rp
∂T

∂xi
, (14)

and Eq. (13) reduces to the Navier-Stokes equations with Pr being the Prandtl number. Higher-order macroscopic equations 
can be obtained successively but they are not stable. On the other hand, even the obtained high-order macroscopic equations 
are stable, they are only the approximate solutions of the Boltzmann equation, rather than the exact solutions. Therefore, 
they cannot be used to describe the multiscale rarefied gas dynamics.

It should be noted that in the implicit UGKS [14] and other variants [45,46], both the gas kinetic equation and macro-
scopic equations (13) are solved, where σi j and q are obtained according to Eq. (9). These methods are efficient when the 
Knudsen number is large, like CIS. However, in the near-continuum flow regime, the number of iterations are still large, at 
the order of thousands iterations. The reason for the relative slow convergence is that, if the iteration starts from the global 
equilibrium state where σi j and q are zero, in most of the time the Euler equations, rather than the Navier-Stokes equations 
that dominate the steady-state flow dynamics, are solved, because the perturbance from wall boundaries takes a long time 
to reach the bulk region for near-continuum flows so σi j = q = 0. Even when the shear stress and heat flux are non-zero, 
solutions of Eq. (13) deviate from that of the Navier-Stokes equations in the near-continuum flow regime unless they nearly 
converge to the steady-state solution. As a matter of fact, the authors have checked that, in the linearized Poiseuille flow [6], 
Eq. (13) cannot help to find converged solution within dozens of iterations when the shear stress and heat flux are obtained 
from the solution of Boltzmann equation (10).

Bearing this in mind, to develop an ultra-fast convergence scheme, it is beneficial to construct macroscopic equations that 
contain the Newton’s law for stress and Fourier’s law for heat conduction explicitly to recover the macroscopic transport 
mechanism; that is, the shear stress and heat flux should be expressed as follows:

σi j = −2δ−1
rp

∂U<i

∂x j>
+ HoTσi j , (15)

qi = − 5

4Pr
δ−1

rp
∂T

∂xi
+ HoTqi , (16)

where HoTσi j and HoTqi are high-order terms containing contributions of all the orders O (Knα′
), with α′ = 2, 3, · · · , ∞.

There might be several ways to construct the high-order terms. In this paper, we adopt the following strategy. To ob-
tain (15), we multiply Eq. (3) by 2(vi v j − δi j |v|2/3) and integrate the resultant equation with respect to v , and obtain

∂σi j

∂t
+ 2

∫
(vi v j − δi j

3
|v|2)v · ∂h

∂x
dv − 2

∂U<i

∂x j>︸ ︷︷ ︸
HoT

+ 2
∂U<i

∂x j>
= −δrpσi j︸ ︷︷ ︸

Newton’s law of viscosity

+2
∫

(L − Ls)vi v jdv, (17)

where

Ls = δrp

{[
ρ + 2U · v + T

(
|v|2 − 3

2

)
+ 4 (1 − Pr)

5
q · v

(
|v|2 − 5

2

)]
feq − h

}
(18)

is the linearized collision operator of the Shakhov kinetic model equation [47], and

HoTσi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂xi

∫
(2v2

i − 1)v jhdv + ∂
∂x j

∫
(2v2

j − 1)vihdv + ∂
∂xk

∫
2v1v2 v3hdv,

for i 	= j,k 	= i,k 	= j,

∂
∂xi

∫
2(v2

i − |v|2
3 − 2

3 )vihdv +∑
k

∂
∂xk

∫
2(v2

i − |v|2
3 + 1

3 )vkhdv,

for i = j,k 	= i.

(19)
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Note that this derivation is simple as we just separate the term 2 ∂U<i
∂x j>

in Eq. (17) from high-order moments 
∫

2(vi v j −
δi j|v|2/3)vkhdv , and the purpose of introducing Ls is only to recover the term δrpσi j , so that the Newton’s law of stress is 
recovered explicitly. It should also be noted that, for the linearized Boltzmann collision operator, the term 2 

∫
(L − Ls)vi v jdv

is negligible when compared to δrpσi j . For instances, for the Maxwell molecular model it is zero, while for the HS molecular 
model it is less than 2% of δrpσi j , see page no. 169 in the third edition of the book [1].

Similarly, to obtain Eq. (16), we multiply Eq. (3) by vi(|v|2 − 5/2) and integrate the resultant equation with respect to 
v; we obtain

∂qi

∂t
+ HoTqi + 3Cq

2

∂T

∂xi
= −2

3
δrpqi +

∫
(L − Ls)vi|v|2dv, (20)

where

HoTqi = ∂

∂xi

∫ [
(v2

i − Cq)

(
|v|2 − 3

2

)
− v2

i

]
hdv +

∑
j 	=i

∂

∂x j

∫
vi v j

(
|v|2 − 5

2

)
hdv. (21)

For the linearized Boltzmann collision operator, the term 
∫

(L − Ls)vi |v|2dv is negligible when compared to δrpqi , i.e. within 
3% of δrpqi [1]. If we choose Cq = 5/9Pr, then the under-braced term in Eq. (20) recovers the Fourier’s heat conduction 
law (14). Since for monatomic gas the Prandtl number is close to 2/3, in the following paper we choose Cq = 5/6.

Note that the macroscopic equations (13), (17) and (20) resemble the Grad 13 moment equations [48,49]. However, since 
the higher-order terms (19) and (21) are computed directly from the velocity distribution function, no approximations are 
introduced here. If the velocity distribution function is approximated by the Gauss-Hermite polynomials to the third order, 
where the coefficients before those polynomials are determined by the first 13 moments of velocity distribution function, 
then G13 moment equations will be recovered. Since the first-order Chapman-Enskog expansion to G13 equations leads to 
Eqs. (13) and (14), that is, only the underlined terms in Eqs. (17) and (20) are retained, the derived synthetic equations (13), 
(17) and (20) are asymptotic preserving the Navier-Stokes limit. Thus, they should be able to boost the convergence to the 
steady-state solution of the LBE in near-continuum flow regime significantly, as we are effectively solving the Navier-Stokes 
equations in the bulk region (a few mean free path of gas molecules away from solid surfaces).

With these macroscopic equations to update the macroscopic quantities and the velocity distribution function, we devise 
the following iterative scheme to find the steady-state solution of the LBE (3) efficiently:

• Step 1. When the velocity distribution function h(k) and the corresponding macroscopic quantities in Eqs. (8) and (9)
are known at the k-th iteration, we calculate 2 

∫
(L − Ls)vi v jdv in Eq. (17) and 

∫
(L − Ls)vi |v|2dv in Eq. (20). We also 

calculate the velocity distribution function h(k+1/2) according to the conventional iterative scheme (10), that is, we solve 
the following equation:

νeq(v)h(k+1/2) + v · ∂h(k+1/2)

∂x
= L+(h(k), feq), (22)

by a second-order upwind finite difference in the bulk and a first-order upwind scheme at the solid surface [42] or the 
DG method [43,44].

• Step 2. From h(k+1/2) , we calculate the density ρ(k+1/2)(x), flow velocity U (k+1/2)(x), the temperature T (k+1/2)(x), the 
shear stress σ (k+1/2)

i j (x), the heat flux q(k+1/2)(x), as well as the high-order terms HoTσi j and HoTqi defined in Eqs. (19)
and (21), respectively.

• Step 3. We obtain the macroscopic quantities ρ(k+1)(x), U (k+1)(x), T (k+1)(x), σ (k+1)
i j (x), and q(k+1)(x) by solving the 

synthetic equations (13), (17) and (20), That is, for the steady-state problems the shear stress and heat flux can be 
solved from Eq. (17) and (20), which will then be substituted to Eq. (13) to form the Navier-Stokes equations with 
source terms determined by the higher-order terms defined in Eqs. (19) and (21). These equations can be solved by the 
SIMPLE algorithm and/or DG method easily in the bulk region, where the boundary values in the vicinity of wall for the 
density, velocity, temperature are obtained from Step 2. The detailed DG algorithm to solve the synthetic equations can 
be found in the Appendix.

• Step 4. The velocity distribution function h is modified to incorporate the change of macroscopic quantities. That is,

h(k+1)(x, v) =h(k+1/2)(x, v) +
[

2λU (x) · v + 4

5
λq(x) · v

(
|v|2 − 5

2

)]
feq

+
[
λρ(x) + λT (x)

(
|v|2 − 3

2

)
+ λσi j (x)

(
vi v j − |v|2

3
δi j

)]
feq, (23)

where λU (x) = U (k+1)(x) − U (k+1/2)(x), λq(x) = q(k+1)(x) − q(k+1/2)(x), λρ(x) = ρ(k+1)(x) − ρ(k+1/2)(x), λT (x) =
T (k+1)(x) − T (k+1/2)(x), and λσi j (x) = βσ

(k+1)
i j (x) − βσ

(k+1/2)

i j (x), with β = 3/2 when i = j and β = 2 otherwise.
• Step 5. The above steps are repeated until convergence.
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Since the gas kinetic equation is solved together with the macroscopic equations (13), (17) and (20) for general rarefied 
gas flows, the above scheme is called GSIS. Note that although SIS has been widely applied to the radiation transport 
process [24] and rarefied gas flows driven by local pressure, temperature, and concentration gradients [25,30,31,27,43] to 
overcome the slow convergence and remove the constraint on the spatial cell size in the near-continuum flow regime, it is 
the first time that GSIS is developed for general rarefied gas flows described by the LBE.

4. Numerical test for zero-dimensional problem: Rayleigh-Brillouin scattering

For linearized problems, if the external force that drives the flow changes periodically in time, then the velocity distri-
bution function can be expressed as [50–52]:

f = feq(v) + α
 [exp(iStt)h(x, v)] , (24)

where 
 is the real part of a variable and h satisfies the following linearized Boltzmann equation:

iSth + v · ∂h

∂x
= L(h, feq). (25)

Note that here i is the imaginary unit and h is a complex function, so are the macroscopic quantities defined in Eqs. (8)
and (9). These complex values will introduce phase shifts relative to that of the external driving force. The Strouhal number 
St

St = � H

vm
(26)

is the oscillation frequency � normalized by vm/H . The solutions to these oscillating problems can also be accelerated by 
GSIS; the corresponding macroscopic synthetic equations can be obtained if we replace ∂/∂t in Section 3 by iSt.

We use the example of spontaneous Rayleigh-Brillouin scattering (SRBS) to demonstrate the accuracy and efficiency of 
GSIS. In SRBS, light propagating through the gas is scattered by the thermal motion of gas molecules, where the spectrum 
of the scattered light contains the information of gas such as temperature, speed, and viscosity. Thus, SRBS provides a 
non-intrusive way to probe the gas properties in a remote way. Theoretically, the SRBS spectrum can be obtained by solving 
the LBE (3) with the initial condition h(t = 0, x2, v) ∝ δ(x2) feq(v), which represents a density impulse [53,54]. To be more 
specific, the SRBS spectrum is calculated as

Ss(δrp, f s) = 

(∫

ĥdv

)
, (27)

where ĥ(v), the Laplace/Fourier transforms of h in the temporal/spatial direction, satisfies

2π i( f s − v2)ĥ = L+(ĥ) − νeqĥ + feq. (28)

Note that in Eq. (27) and (28), the rarefaction parameter δrp is defined when the characteristic flow length H is 
λL/2 sin(θs/2), with λL being the wavelength of laser and θs the angle of light scattering, and f s(= St/2π) is the frequency 
shift in the scattering process normalized by the characteristic frequency vm/H . Also note that terms in the left-hand-side 
of Eq. (28) appear because operators ∂/∂t and ∂/∂x2 in Eq. (3) are replaced by 2iπ f s and −2iπ due to the Laplace-Fourier 
transform, respectively. Finally, the source term feq in Eq. (28) is from the Laplace transform of the initial density impulse; 
this term changes the first equation in Eq. (13) to ∂ρ

∂t + ∂Ui
∂xi

= 1, while other synthetic equations remain unchanged.
In CIS, the velocity distribution function is obtained by solving the following equation iteratively:

ĥ(k+1)(v) = L+(ĥ(k)) + feq(v)

2π i( f s − v2) + νeq(v)
, (29)

which converges fast when δrp is small, but extremely slow when δrp is large as the flow enters the near-continuum regime.
In GSIS, the synthetic equations can be rewritten in the following matrix at the (k + 1)-th iteration step:⎡
⎢⎢⎢⎢⎢⎢⎣

2iπ f s −2iπ 0 0 0

−2iπ 4iπ f s −2iπ −2iπ 0

0 −2iπ 3iπ f s 0 −2iπ

0 − 8
3 iπ 0 2iπ f s + δrp 0

0 0 −3iπCq 0 2iπ f s + 2
3 δrp

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n̂(k+1)

Û (k+1)
2

T̂ (k+1)

σ̂
(k+1)
22

q̂(k+1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

R4

R5

⎤
⎥⎥⎥⎥⎥⎥⎦ , (30)

where, the hat denotes the Laplace-Fourier transform of the corresponding quantity, R4 = 2iπHoT(k+1/2)
σ22 + 2 

∫
(L − Ls)v2

2dv

and R5 = 2iπHoT(k+1/2)
q + ∫

(L − Ls)v2|v|2dv .
2
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Fig. 1. Comparisons of the SRBS spectrum (a) and iteration numbers (b) between the CIS and GSIS when the rarefaction parameter is large. The HS molecular 
model is used in the LBE. The molecular velocity space [−6, 6]3 is discretized by 24 × 32 × 24 uniformly distributed points. Solutions are believed to be 
converged in both schemes when the relative error in ρ̂ between two consecutive iteration steps is less than 10−7. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

In the numerical simulation, starting from the zero perturbance at each frequency difference, solutions are believed to 
be converged when the relative error in ρ̂ between two consecutive iteration steps is less than 10−7. Results in Fig. 1(a) 
show that GSIS and CIS generate almost the same SRBS spectra, except at δrp = 50 CIS has a false converged solution (i.e. 
the discontinuous spectrum) when the frequency difference is around 0.68. From Fig. 1(b) we see that the iteration number 
in CIS increases significantly with the rarefaction parameter δrp, while in GSIS this remains nearly unchanged and is far less 
than that of CIS. For example, the iteration number of GSIS is about 10 and 100 times less than that of CIS when δrp = 10
and 50, respectively. We have also tested that, even when δrp = 500, converged solutions are obtained within 20 steps in 
GSIS for every frequency difference.

However, when δrp is small and St is large, GSIS does not converge or even blows up. This is because the eigenvalue of 
the matrix in Eq. (30) has large complex values so that any inappropriate initial guess can lead to large oscillations that 
decay rather slow or even blow up. Whereas, physically speaking, the solution should decay fast due to the large rarefaction 
effect, that is, large dissipation. To remedy this, the small value δrp in the left-hand side of Eq. (30) is replaced by a relative 
large value δ̄rp = max(δrp, 10), while the right-hand side terms are modified correspondingly as

R4 =2iπHoT(k+1/2)
σ22 + 2

∫
(L − Ls)v2

2dv + (δ̄rp − δrp)σ̂
(k+1/2)

22 ,

R5 =2iπHoT(k+1/2)
q2 +

∫
(L − Ls)v2|v|2dv + 2

3
(δ̄rp − δrp)q̂(k+1/2)

2 . (31)

This simple treatment helps to decay non-physical solutions at initial few iteration steps. When the solution of the new 
system converges, it can be proven that it satisfies Eq. (30). Therefore, no approximation is introduced to the converged 
solution. This point is proven in Fig. 2, where the GSIS and CIS solutions agree perfectly with each other, and from the inset 
we see that GSIS needs slightly less iteration steps than CIS at most frequency differences.

Another remarkable property of GSIS is that, at the same level of convergence criterion, GSIS provides more accurate 
numerical solutions. One example is given in Fig. 3, where one can see that the relative error between two consecutive 
iteration steps ε = |ρ̂(k+1)/ρ̂(k) − 1| decays rather fast in GSIS, while in CIS it decreases slowly with many oscillations. As a 
consequence, GSIS finds the correct spectrum profile even when the relative error in density is less 10−2, while CIS finds 
the correct solution only when the error is less than 10−6. This is explained below. According to the analysis of Adam and 
Larsen for radiation transfer problem [24], if one stops at the (k + 1)-th step with∣∣∣∣∣ ρ̂

(k+1)

ρ̂(k)
− 1

∣∣∣∣∣= ε (32)

in CIS, then the relative difference from the true solution ρ̂ is∣∣∣∣ ρ̂
(k+1)

− 1

∣∣∣∣≈ γ
ε, (33)
ρ̂ 1 − γ
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Fig. 2. Comparisons of the SRBS spectrum and iteration numbers (inset) between CIS and GSIS when the rarefaction parameter is small. The Maxwell 
molecular model is used in the LBE. The molecular velocity space [−6, 6]3 is discretized by 24 × 192 × 24 uniformly distributed points due to high 
rarefaction effects. The solutions are believed to be converged when the relative error in ρ̂ between two consecutive iteration steps is less than 10−7.

Fig. 3. (a) The decay of the relative error ε = |ρ̂(k+1)/ρ̂(k) − 1| between two consecutive iteration steps, and (b) the SRBS spectra obtained at different level 
of convergence criterion. The reference solution is obtained from GSIS when ε = 10−7. The linearized Boltzmann equation with HS molecular model is 
used, with the rarefaction parameter δrp = 50.

where γ is the spectral radius of the iteration operator. For problems with slow convergence, γ is very close to one (see 
Fig. 1 in Ref. [6] for the kinetic BGK model equation), which could make the difference from true solution magnified by 
thousands of times. And thus the convergence criterion ε in CIS should be set at a much smaller value.

5. Numerical tests for one-dimensional problems

Numerical simulations are further carried out to assess the efficiency and accuracy of GSIS. To this end, we consider 
one-dimensional problems between two parallel plates, including the Fourier flow, oscillating Couette flow and sound pro-
rogation. The reason is that in previous cases the special SIS is only applicable for rarefied gas flows [25,30,31,27,43,33], 
where the flow velocity is perpendicular to the computational domain. Here we investigate the performance of GSIS for 
typical general rarefied gas flows, where the flow velocity (or other macroscopic variables) also varies within the computa-
tional domain. Specifically, we will show that, through numerical simulations, (i) how the fast convergence is achieved and 
(ii) GSIS is asymptotically preserving the Navier-Stokes limit so that its numerical dissipation is very small compared to CIS.
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5.1. Heat transfer between two parallel plates

Consider the steady Fourier flow of a gas between two infinite parallel plates with a distance H , located at x2 = 0 and 
x2 = 1. The two plates are stationary, the one at x2 = 0 has a temperature T0 −�T /2, while that at x2 = H has a temperature 
T0 +�T /2. We assume that the temperature difference �T is negligible compared to T0, so that the problem is symmetrical 
around x2 = 1/2. Therefore, in numerical simulations only the region x2 ∈ [0, 1/2] is considered. The Boltzmann equation is 
linearized by choosing α = �T /T0 in Eq. (2). The boundary condition at x2 = 0, as according to Eqs. (2) and (7), is

h(x2 = 0, v) =
⎡
⎢⎣1 − |v|2

2
− 2

√
π

∫
v2<0

v2h(x2 = 0, v)dv2

⎤
⎥⎦ feq, when v2 > 0, (34)

while that at x2 = 0.5 is

h(v1, v2, v3) = −h(v1,−v2, v3), (35)

due to the symmetry of this linearized problem.
From the synthetic equations (13), (17) and (20), as well as the symmetry condition (35), we know

U = 0, σi j = 0 when i 	= j, q1 = q3 = 0, (36)

the heat flux q2 perpendicular to the two plates is a constant, and the variation of the perturbed temperature satisfies

∂T

∂x2
= −4δrp

9Cq
q2 + 2

3Cq

∫
v2|v|2(L − Ls)dv︸ ︷︷ ︸

H(k)
1 (x2)

− 2

3Cq

∂

∂x2

∫
(v2

2 − Cq)

(
|v|2 − 3

2

)
hdv︸ ︷︷ ︸

H(k+1/2)
2 (x2)

, (37)

whose solution at the (k + 1)-th iteration step is given by

T (k+1)(x2) = −4δrpq2

9Cq

(
x2 − 1

2

)
+

x2∫
1/2

H (k)
1 (x2)dx2 − H (k+1/2)

2 (x2), (38)

where the constant heat flux q2 is

q2 = 9Cq

2δrp

[
T (k+1/2)(x2 = 0) + H (k+1/2)

2 (x2 = 0) − H (k)
1 (x2 = 0)

]
. (39)

When the temperature is known, the density variation can be easily obtained by solving the following equation

ρ + T + σ22 =
∫

2v2
2hdv, (40)

where the term at the right-hand-side of Eq. (40) is zero due to the symmetry condition (35), and according to Eq. (17) the 
stress σ22 is calculated as

σ22 = −
∂

∂x2

∫
2
(

v2
2 − |v|2

3

)
v2hdv

δrp
+ 2

δrp

∫
(L − Ls)v2

2dv. (41)

We first test the efficiency of GSIS based on the Shakhov model, that is, the linearized Boltzmann collision operator in 
Eq. (3) is replaced by the linearized Shakhov model (18). We choose the rarefaction parameter δrp = 50 and discretize the 
half spatial space into N2 even-spaced points, where the derivative with respect to x2 is approximated by a second-order 
upwind finite difference. The molecular velocity space in the v1 and v3 directions is truncated to the region [−6, 6] by 
24 × 24 equidistant points, while the molecular velocity v2 is truncated to [−6, 6] and approximated by the non-uniform 
points [39,55]:

v2 = 6

(Nv − 1)ı
[(−Nv + 1)ı , (−Nv + 3)ı , · · · , (Nv − 1)ı], (42)

which is useful to capture the discontinuity in the velocity distribution function near v2 ∼ 0. In this test we take ı = 3 and 
Nv = 64. The iterations in both CIS and GSIS are terminated when

ε = max

{∫ ∣∣∣∣∣ρ
(k+1)

ρ(k)
− 1

∣∣∣∣∣dx2,

∫ ∣∣∣∣∣ T (k+1)

T (k)
− 1

∣∣∣∣∣dx2,

∫ ∣∣∣∣∣q
(k+1)
2

q(k)
− 1

∣∣∣∣∣dx2

}
(43)
2



W. Su et al. / Journal of Computational Physics 407 (2020) 109245 11
Fig. 4. Density and temperature profiles at different iteration steps obtained from CIS (a, b) and GSIS (c, d), when the rarefaction parameter is δrp = 50. 
Circles show the converged solution obtained from GSIS. The linearized Shakhov model is used with the initial condition h(x2, v) = 0. The spatial region is 
discretized by N2 = 51 equidistant points. The iteration stops when ε in Eq. (43) is less than 10−5. Data in the legends are the iteration steps.

is less than a certain value. Note that ρ and T at x2 = 1/2 are excluded in the above equation since they are zero.
Fig. 4 compares the convergence history of GSIS and CIS when the rarefaction parameter is δrp = 50, that is, the flow is 

in the near-continuum regime. Starting from the initial guess h(x2, v) = 0, the perturbance from the solid surface quickly 
changes the density and temperature near the solid surface in CIS (within about one molecular mean free path away from 
the wall). However, due to the frequent collision between gas molecules, it takes a long time (i.e. iteration steps) to feel this 
change in the bulk region. From example, from Fig. 4(b) we see that about 50 iteration steps are needed for the temperature 
at x2 = 0.5 to feel this change. Moreover, such a change does not necessarily lead to the final converged state monotonically, 
but it could deviate the solution further away from the final steady state: from Fig. 4(a) we see that the density perturbance 
in the bulk region is even negative after 50 iterations, while the final steady state of the density is always non-negative in 
the region of x2 ∈ [0, 0.5]. This is also evidenced in Fig. 5 that the error does not decay monotonically but oscillates several 
times. Such a slow convergence is completely changed in GSIS, where the temperature and density are corrected according 
to the synthetic equations (37) and (40); the dominated parts are respectively ∂T

∂x2
= − 4δrp

9Cq
q2 and ρ = −T when δrp is large, 

and this means that the temperature and density in the bulk region are corrected to be nearly linear immediately; and this 
is the major reason for the fast convergence in GSIS. As we can see from Fig. 4(d), after the first iteration, the temperature 
from GSIS at x2 = 0 is the same as that from CIS, but the temperature from the GSIS in the bulk region varies linearly, while 
that from CIS is still zero. From Fig. 4(c) we see that the density also varies linearly in the bulk, but at the solid surface it 
is more close to the final state than that obtained from CIS. Since the diffusion-type macroscopic equation (37) allows the 
efficient exchange of information, fast convergence is realized in the whole computational domain, see Fig. 4(c) and (d).

Fig. 5 demonstrates how fast the solution is converged at different values of rarefaction parameter. When δrp is small, 
errors in both CIS and GSIS decay at the same rate, which means that the two schemes are as efficient as each other. As δrp
increases so that the flow enters the transition and near-continuum regimes, the error in CIS oscillates several times before 
it decays monotonically. As a consequence, the iteration number of CIS increases rapidly with the rarefaction parameter, 
which nearly scales as δ2

rp. For GSIS, however, the error is monotonically decreasing, and the rarefaction parameter does 
not influence the error decay rate, where the converged solutions are obtained within the same number of iterations (i.e. 
about 20 iterations) for each rarefaction parameter from the free molecular to continuum flow regimes. At δrp = 50, GSIS is 
about 100 times more efficient than CIS, and it can be expected that the gain of using GSIS becomes larger than δrp further 
increases.

Another important property of GSIS is that the numerical error caused by the spatial discretization is largely reduced 
when compared to that of CIS. From Fig. 6 we see that when N2 is decreased from 251 to 6 (that is, when the spatial 
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Fig. 5. The decay of the error ε as a function of the iteration step, for the Fourier flow between two parallel plates described by the linearized Shakhov 
model. The spatial region is discretized by N2 = 51 equidistant points.

Fig. 6. The influence of the spatial discretization on accuracy of both the CIS and GSIS, for the Fourier flow between two parallel plates described by the 
linearized Shakhov model with δrp = 50. The iteration terminates when ε < 10−6. The reference solutions (i.e. ρref and q2,ref) are obtained from GSIS with 
N2 = 251, that is, the spatial cell size is about one tenth of the mean free path of gas molecules.

cell size is respectively about 1/10 and 5 times of the mean free path of gas molecules), in CIS, the relative error in the 
density profile increases from 0.3% to 9%, while that in the heat flux increases from 0.3% to 16%. However, the relative error 
in GSIS always remain within 1%, even when the cell size is about 5 times larger than the gas mean free path. Note that 
even when δrp = 500, the heat flux obtained from GSIS only changes from 3.721 × 10−3 when N2 = 551 to 3.726 × 10−3

when N2 = 6. The reason for this excellent performance of GSIS is that it asymptotically preserves the Navier-Stokes limit 
(i.e. at large values of δrp the synthetic macroscopic equations are essentially the Navier-Stokes equations), while in CIS the 
“numerical” thermal conductivity by solving the kinetic equation may be different to the physical one. Besides, in CIS, the 
false convergence, e.g. the non-uniform distribution of heat flux in Fig. 6(b), may be reached when the spatial resolution is 
not enough. The superior GSIS, however, does not suffer from this problem.

It should be noted that the implicit UGKS and other variants [14,45,46] can also produce accurate results when the cell 
size is much larger than the molecular mean free path. This is achieved through a complex evaluation of the numerical 
flux at cell interfaces to simultaneously handle the streaming and collision of gas molecules. GSIS, however, does not need 
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Fig. 7. The Knudsen layer function Ts for the temperature profile in the Fourier flow between two parallel plates obtained from GSIS. Note that the 
Lennard-Jones potential for helium is used at T0 = 300 K, where the fast spectral method developed in Ref. [41] is used to calculate the Boltzmann 
collision operator.

complex flux evaluation (as in this case we just use the second-order upwind finite difference) to keep the numerical 
dissipation low, because the Navier-Stokes constitutive laws are recovered explicitly.

Using the accurate and efficient GSIS, the LBE is solved for different collision kernels (6) to find the temperature jump 
coefficients and the corresponding Knudsen layer functions. In the numerical simulation, we set the rarefaction parameter 
to be δrp = 60, so that the distance between two plates is about 60 times the mean free path of gas molecules; thus, the 
interference between Knudsen layers near each plate is avoided. In the fast spectral approximation of the linearized Boltz-
mann collision operator (4), the integral with respect to the solid angle � is calculated by the Gauss-Legendre quadrature 
with M = 6, see Eq. (39) in Ref. [40]. In the spatial discretization we set

x2 = (10 − 15s + 6s2)s3, s = (0,1, · · · , Ns − 1)/2(Ns − 1), (44)

with Ns = 200. The iteration is terminated when ε < 10−6.
When the steady-state solution is obtained, the temperature profile in the bulk region (i.e. 0.4 ≤ x2 ≤ 0.5) is linearly fitted 

as TNS = k1(x2 − 1/2) in the dimensionless form, where k1 is the coefficient from the least square fitting of temperature. 
Then the Knudsen layer function is calculated as:

Ts
(
x2δrpPr

)= δrpPr
TNS(x2) − T (x2)

k1
, (45)

and the temperature jump coefficient is calculated as [56]

ζT = δrp

2

(
5

4δrpPr|q2| − 1

)
. (46)

When the LBE for HS, Helium and Maxwell molecules is solved by GSIS, steady-state solutions are reached after 22, 25 
and 27 iterations, respectively, and the temperature jump coefficients are respectively 1.892,1.892 and 1.954, which do not 
differ a lot among the three collision kernels. However, large discrepancies are found in the Knudsen layer functions in 
Fig. 7. It is amazing that small terms 2 

∫
(L − Ls)vi v jdv in Eq. (17) and 

∫
(L − Ls)vi |v|2dv in Eq. (20) significantly affect the 

Knudsen layer function.

5.2. Oscillatory Couette flow between two parallel plates

Consider the rarefied gas dynamics between two infinite parallel plates with a distance H , located at x2 = 0 and x2 = 1. 
Both plates have a temperature T0, the one at x2 = 1 is stationary, while that at x2 = 0 oscillating in the x1 direction with 
the velocity

Uw,1 = 

[

U0

vm
exp(iStt)

]
. (47)

The Boltzmann equation is linearized by choosing α = U0/vm in Eq. (25). If we consider the diffuse boundary condition, 
then we have h(x2 = 0, v) = 2v1 feq when v2 > 0, and h(x2 = 1, v) = 0 when v2 < 0 [50]. The synthetic equations (13), (17), 
and (20) can be simplified to
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Fig. 8. Comparisons of the amplitude of shear stress exerting on the oscillating plate and iteration numbers (inset) between CIS and GSIS, for the oscillating 
Couette flow. The Shakhov model is solved, where the solution is converged when ∫ ∣∣∣∣ U (k+1)

1

U (k)
1

− 1

∣∣∣∣dx2 < 10−5.

2iStU1 + ∂σ12

∂x2
= 0,

iStσ12 + HoTσ12 + ∂U1

∂x2
= −δrpσ12 + 2

∫
(L − Ls)v1 v2dv, (48)

where the moments involving even orders of v1 are all zero, and we do not consider the heat flux q1 in this problem as it 
does not affect the rate of convergence. It is noted that the above equations reduce to the synthetic equation developed in 
Ref. [33] when St = 0.

The two equations in Eq. (48) can be combined to produce the following diffusion equation for the flow velocity U1 in 
the (k + 1)-th iteration step:

2iSt(iSt + δrp)U (k+1)
1 − ∂2U (k+1)

1

∂x2
2

= ∂

∂x2

[
2
∫

(L(k) − L(k)
s )v1 v2dv − HoT(k)

σ12

]
. (49)

In the numerical simulation, the spatial space is discretized by Eq. (44) with Ns = 100. The kinetic equation (22) is 
solved by the second-order upwind scheme, while the derivative in Eq. (49) is approximated by the central finite difference 
scheme with 5 stencils, and the resulting linear algebraic system for U1 is solved exactly in the bulk region (i.e. at least 
three spatial points away from the boundary) in matrix form.

The comparison in accuracy and efficiency between CIS and GSIS is summarized in Fig. 8, where the molecular velocity 
space is discretized in the same way as that in the previous tests, but with Nv = 96 in Eq. (42). The relative difference in the 
amplitude of shear stress σ12 obtained from GSIS and CIS is within 1% for all the δrp and St considered. When the rarefaction 
parameter is δrp = 50, we see that the number of iterations in CIS decreases from 30,000 to 100 when Strouhal number 
increases from 0 to 50. The reason for this reduction can be understood in the following way. The temporal Knudsen number 
Knt, which is defined as the ratio of characteristic oscillation frequency to the mean collision frequency of gas molecules, 
i.e.

Knt = �

vm/λ
= St

δrp
, (50)

increases with St. Therefore, even when δrp is large, that is, when the spatial Knudsen number is small, the large temporal 
Knudsen number can also make the flow rarefied, and the more rarefied the gas, the faster the iteration to reach steady-state 
solutions. Even with this effect, GSIS is still faster than CIS: only about 20 iterations are needed in GSIS for each Strouhal 
number considered.

However, for the GSIS in oscillating problems, there is a problem, like the one encountered in Section 4. From Eq. (49)
we see that the eigenvalue of this second-order differential equation is imaginary, which means that when δrp is small and 
St is large, the solution will change quasi-periodically in the spatial direction with large frequency, whereas physically the 
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Fig. 9. Comparisons of the velocity profiles in the oscillating Couette flow with different spatial resolutions, when (a, b) δrp = 50 and St = 1 and (c, d) 
δrp = 500 and St = 0.1. The reference solution is obtained from GSIS, where the spatial domain is discretized by Eq. (44), with Ns = 100 when δrp=50 and 
Ns = 500 when δrp = 500.

solution should decay fast from the oscillating sources as the dissipation is huge due to the large values of both spatial and 
temporal Knudsen numbers. Mathematically speaking, for highly oscillating solutions, any slight inaccurate boundary con-
ditions will lead to completely different solutions. Therefore, in the numerical simulation, when we solve Eq. (49) directly, 
the solution is either wrong or blows up. To fix this problem, again we introduce a relative large value of δ̄rp to decay the 
fast oscillation. That is, instead of solving Eq. (49), we solve the following diffuse-type equation:

2iSt(iSt + δ̄rp)U (k+1)
1 − ∂2U (k+1)

1

∂x2
2

= ∂

∂x2

[
2
∫

(L(k) − L(k)
s )v1 v2dv − HoT(k)

σ12

]
+ 2iSt(δ̄rp − δrp)U (k+1/2)

1 , (51)

where

δ̄rp = max(δrp,St). (52)

It can be proven that, when the solution of Eq. (51) converges, Eqs. (51) and (49) are equivalent. This treatment does 
not affect the accuracy and efficiency of GSIS when δrp is small, while when δrp is large, the solution from the synthetic 
equations is always stable, and we see in Fig. 8 that in most cases GSIS needs less iterations than CIS.

In addition to the significant reduction of iteration number, GSIS needs less spatial grids than that of CIS. Two examples 
are given in Fig. 9, where one can see that GSIS can yield accurate results even when the cell sizes are respectively about 
6.6 and 50 times of the molecular mean free path, while CIS has large error due to the strong numerical dissipation when 
the spatial cell size is much larger than the molecular mean free path.
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5.3. Sound propagation between two parallel plates

Consider the sound propagation through a gas between two infinite parallel plates with a distance H , located at x2 = 0
and x2 = 1. The two plates have a temperature T0, the one at x2 = 1 is stationary, while that x2 = 0 oscillating in the x2

direction with the speed Uw,2 = 
 [(U0/vm)exp(iStt)]. The Boltzmann equation is linearized by choosing α = U0/vm in 
Eq. (25). The boundary conditions are [51]

h(x2 = 0, v) =
⎡
⎢⎣√

π + 2v2 − 2
√

π

∫
v2<0

v2h(x2 = 0, v)dv

⎤
⎥⎦ feq, when v2 > 0,

h(x2 = 1, v) =2
√

π feq

∫
v2<0

v2h(x2 = 1, v)dv, when v2 < 0.

(53)

The synthetic equations (13), (17), and (20) can be simplified to

iStρ + ∂U2

∂x2
= 0, (54)

2iStU2 + ∂ρ

∂x2
+ ∂T

∂x2
+ ∂σ22

∂x2
= 0, (55)

3

2
iStT + ∂q2

∂x2
+ ∂U2

∂x2
= 0, (56)

iStσ22 + HoTσ22 + 4

3

∂U2

∂x2
= −δrpσ22 + 2

∫
(L − Ls)

(
v2

2 − |v|2
3

)
dv, (57)

iStq2 + HoTq2 + 3Cq

2

∂T

∂x2
= −2

3
δrpq2 +

∫
(L − Ls)v2|v|2dv. (58)

These synthetic equations can be combined to form two diffusion equations for the flow velocity U2 and temperature T , 
respectively. To quickly decay the non-physical oscillations when δrp is small and St is large, in numerical iterations we set

δrpσ
(k+1)
22 =δ̄rpσ

(k+1)
22 + (δrp − δ̄rp)σ

(k+1/2)

22 ,

δrpq(k+1)
2 =δ̄rpq(k+1)

2 + (δrp − δ̄rp)q(k+1/2)

2 , (59)

where δ̄rp is given in Eq. (52). When U2 and T are solved, the perturbed density, shear stress and heat flux can be solved 
from Eqs. (54), (57), and (58).

Typical numerical results are shown in Fig. 10 when the spatial region x2 ∈ [0, 1] is discretized by 200 uniformly-
distributed points, while the velocity grids are the same as that used in Section 5.2. For CIS, it is very difficult to find the 
converged solution when the Strouhal number St is small, where the iteration number scales roughly as St−1.5. However, 
this problem does not exist in GSIS, as the Strouhal number has little effect on total iteration number. The effect of spatial 
resolution on the fidelity of the solution is demonstrated in Fig. 11 when St = 2.5, where the sound waves between two 
plates have resonance. It is seen that GSIS needs less spatial grids than CIS. Again, this example proves the accuracy and 
efficiency of GSIS.

6. Numerical tests for two-dimensional problems

Now we consider the lid-driven cavity flow and shear-driven flow between two eccentric cylinders in two-dimensional 
computational domain. These problems cannot be simulated by SIS, which is only applicable for rarefied gas flows when the 
flow velocity is perpendicular to the computational domain [25,30,31,27,43,33].

6.1. Two-dimensional lid-driven cavity flow

The two-dimensional lid-driven cavity flow is a canonical test for the algorithms for both the Navier-Stokes and gas 
kinetic equations. The flow domain is a square with the size of 1 × 1, where the left and right walls are located at x1 = 0 
and x1 = 1, while the bottom and top walls are located at x2 = 0 and x2 = 1, respectively. The top wall moves in the x1

direction with a constant velocity of Uw, while the other walls are static. All the walls are kept at the uniform temperature 
T0. To demonstrate the accuracy and efficiency of GSIS, the Shakhov kinetic equation is linearized by choosing α = Uw/vm

in Eq. (2). The boundary conditions are
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Fig. 10. Comparisons of (a) the amplitude of normal pressure exerting on the oscillating plate and iteration numbers (b) between CIS and GSIS, for the sound 
propagation problem. The Shakhov model is solved, where the solution is converged when max

{∫ ∣∣∣ ρ(k+1)

ρ(k) − 1
∣∣∣dx2,

∫ ∣∣∣∣ U (k+1)
2

U (k)
2

− 1

∣∣∣∣dx2,
∫ ∣∣∣ T (k+1)

q(k) − 1
∣∣∣dx2

}
<

10−5.

Fig. 11. Profiles of macroscopic quantities in the sound propagation problem with different spatial resolutions, when δrp = 50 and St = 2.5. The reference 
solution is obtained from GSIS, where the spatial domain is discretized by Ns = 200 uniform grids; the corresponding CIS results overlap with these lines 
and are not shown here. The normal pressure is defined as P22 = 2 ∫ v2

2hdv .

h (x1 = 0, v) = −2
√

π feq

∫
v1<0

v1h (x1 = 0, v)dv, when v1 > 0,

h (x1 = 1, v) = 2
√

π feq

∫
v1h (x1 = 1, v)dv, when v1 < 0,
v1>0
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Fig. 12. The decay of error ε as a function of the iteration step in the lid-driven cavity flow described by the linearized Shakhov model. The iteration is 
assumed to be converged when ε defined in Eq. (62) is less than 10−5.

h (x2 = 0, v) = −2
√

π feq

∫
v2<0

v2h (x2 = 0, v)dv, when v2 > 0,

h (x2 = 1, v) =
⎡
⎢⎣2v1 + 2

√
π

∫
v2>0

v2h (x2 = 1, v)dv

⎤
⎥⎦ feq, when v2 < 0. (60)

The problem is solved on non-uniform Cartesian grids, where dimensions in both the x1 and x2 axes are discretized by 
Eq. (44). The linearized Shakhov equation is solved by DVM with the 2nd-order upwind finite-difference scheme, where 
the velocity distribution function is stored at the centers of grid cells. In GSIS, Eq. (13) with the constitutive relations 
in Eqs. (17) and (20) lead to the Navier-Stokes-Fourier equations with source terms; these equations are solved using a 
finite-difference version of the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). In each SIMPLE iteration, we 
solve four discrete diffusive equations (for the two velocity components, pressure correction, and temperature) using the 
Jacobi iteration methods.

When the macroscopic flow variables are solved by the SIMPLE algorithm, the velocity distribution function is updated 
as

h(k+1)(x, v) = h(k+1/2)(x, v) + δrp

max(10, δrp)

[
λρ(x) + 2λU (x) · v + λT (x)

(
|v|2 − 3

2

)]
feq, (61)

because (i) the update of the shear stress and heat flux does not affect the accuracy and efficiency of GSIS, and (ii) for 
highly rarefied gas flows, high-order terms are very large and the macroscopic synthetic equations become stiff near the 
solid corners due to the small value of δrp, hence the limiter δrp/max(10, δrp) is introduced to retain numerical stability.

We first test the converging speeds of both CIS and GSIS for the cases of δrp = 0.1, 1, 10, 100 and 1000. The corresponding 
spatial grids are non-uniform with Ns = 21, 21, 21, 41 and 61 respectively. When δrp = 0.1, 1 and 10, the molecular velocity 
v1 and v2 are discretized by Eq. (42) with ı = 3 and Nv = 48, 48 and 24, respectively, while for v3, 24, 24 and 12 uniform 
points in the range of [−6, 6] are used, respectively. When δ = 100 and 1000, the 6- and 8-point Gauss-Hermite quadrature 
nodes are used in all three velocity components. The iterations in both CIS and GSIS are assumed to be converged when

ε =
∫∫ ∣∣∣∣∣ |U

(k+1)|
|U (k)| − 1

∣∣∣∣∣dx1dx2 < 10−5. (62)

The same criterion is used in solving the Navier-Stokes equations by the SIMPLE algorithm.
Fig. 12 compares the decay of error ε as a function of the iteration steps in CIS and GSIS for flows at different values 

of rarefaction parameter, while Table 1 summarizes the total number of iteration steps and the total CPU time, where the 
single threaded Matlab 2018 code is run on Intel Xeon-E5-2680 v4 CPU. Similar to the test case of Fourier heat transfer, at 
small values of δrp (0.1 and 1), errors in both GSIS and CIS decay with the same rate and converged solutions are found 
within 20 iteration steps. In the cases of larger δrp, the iteration step in GSIS slightly increases, but it is less than 40 steps 
even for the case of δrp = 1000. In contrast, the convergence of CIS iteration deteriorates severely as δrp increases: the 
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Table 1
Number of iteration steps and CPU time (the single threaded Matlab 2018 code is run on Intel Xeon-E5-2680 v4 
CPU) to reach convergence for the lid-driven cavity flow.

δrp N2
s Nv1 Nv2 Nv3 Iteration steps Total CPU time (s)

CIS GSIS CIS GSIS

0.1 20 × 20 48 × 48 × 24 14 13 28.5 32.6
1 20 × 20 48 × 48 × 24 14 16 28.2 38.4
10 20 × 20 24 × 24 × 12 99 31 121.4 47.7
100 40 × 40 16 × 16 × 16 1823 36 3176.1 144.1
1000 60 × 60 8 × 8 × 8 — 36 — 492.5

iteration step reaches 1823 for the case of δrp = 100; due to slow convergence the case of δrp = 1000 is not simulated by 
CIS.

With significantly faster convergence rate, GSIS takes much less CPU time than CIS for cases of large δrp as shown in 
Table 1. Note that although the iteration number is reduced in GSIS, the time for each iteration increases as the cost to 
solve the synthetic equations is non-negligible, see the last column of Table 1. This is because the inner loop of the SIMPLE 
algorithm based on segregated approach can take up to several hundreds iterations to converge, depending on the value 
of δrp; for instances, the iteration steps of each inner loop to reach convergence is dynamically decreasing with the DVM 
(outer) iteration, and settles down to a constant which is rarefaction-parameter related, e.g., from 677 to 155 in the case 
of δrp = 100, and from 178 to 76 in the case of δrp = 10. We note that using a coupled algorithm to solve the discretized 
pressure and velocity components in a single linear equation system would be much faster than the segregated approach, 
especially for high δrp cases, as have been studied in the incompressible CFD theories. For example, in the following sec-
tion we find that if the kinetic and synthetic equations are both solved by discontinuous Galerkin method, the cost to 
solve the synthetic equations is negligible since pressure, velocity, and temperature are solved simultaneously by direct 
solver.

To compare the spatial accuracy of GSIS with CIS, we simulate the case of δrp = 100 with different non-uniform physical 
grids, including Ns = 21, 41, 61 and 101. Fig. 13 compares the pressure fields and streamlines predicted by both schemes, in 
which the reference solutions are chosen as the GSIS results on the grid of Ns = 61. It can be seen that the GSIS solution on 
the coarsest grid (Ns = 21) is much more accurate than the CIS counterpart, especially in terms of the pressure field. From 
Fig. 13(d) to (f), we observe that the short contour lines near the bottom wall are accurately captured by GSIS even on the 
coarsest mesh, while CIS can capture them only with the finest mesh in Fig. 13(c).

6.2. Shear-driven flow between two eccentric cylinders

In this section, we consider a shear-driven gas flow between two non-coaxial cylinders. This test case is used to show 
that the proposed GSIS can be efficiently implemented through other CFD method rather than the finite difference algorithm 
to deal with more complicated geometries. As shown in Fig. 14, the outer cylinder with a radius of 2 rotates clockwise at 
a constant speed of Uw, while the inner cylinder with a radius of 1 is stationary. The centers of the outer cylinder and 
inner cylinder are at x = (0, 0.5) and the origin, respectively. Both cylinders have a constant temperature T0. It is assumed 
that Uw is much smaller than the most probable speed vm, thus the gas system can be linearized according to Eq. (2) with 
α = Uw/vm. The velocity distribution function for reflected molecules at the outer cylinder is given by

h (x, v) =
⎡
⎢⎣2tw · v − 2

√
π

∫
v ′·nw<0

v ′ · nwh
(
x, v ′)dv ′

⎤
⎥⎦ feq, when v · nw > 0, (63)

where nw and tw denote the outward unit normal vector and tangential vector of the solid surface, respectively. The 
boundary condition at the inner cylinder is similar but without the term tw · v .

The shear-driven flow is simulated on structured triangular mesh using both GSIS and CIS, in which the grid nodes 
along the radial direction is described by Eq. (44). The high-order DG methods are employed to seek solutions of both the 
linearized Shakhov model equation and the synthetic macroscopic equations, in piecewise polynomial spaces of degree of 3. 
The detailed DG scheme for the gas kinetic equation can be found in Ref. [44], while the hybridizable DG algorithm to solve 
the synthetic macroscopic equations is described in the Appendix. During each iteration step, besides the discretized kinetic 
equations that are solved successively on each spatial cell using the sweeping technique, one linear system (generated after 
DG discretization) of dimension 4(K + 1)Nf × 4(K + 1)Nf for the evolution of all macroscopic unknowns over the whole 
computational domain is solved by the direct solver for large sparse linear system based on LU-decomposition. Here the 
number 4 represents the number of unknowns, i.e. p, u1, u2 and T , K is the degree of approximating polynomials in the 
DG discretization and Nf is the number of faces in spatial mesh skeleton.

The resultant velocity contours and streamlines are illustrated in Fig. 15 for two selected rarefaction parameters 
δrp = 1000 and 10, in which the GSIS solutions are plotted in the left half domain and the CIS ones are plotted in the 
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Fig. 13. Accuracy comparisons between CIS and GSIS for the lid-driven cavity flow. In each plot, the right half are the reference solution (the GSIS results 
on the Ns = 61 grid). In the upper rows, the left halves of the plots are the CIS solutions on grids of Ns = 21, 41 and 101 from the first column to 
third column, respectively. In the lower rows, the left halves are the GSIS solution on grids of Ns = 21, 41 and 61 from the first column to third column, 
respectively. The contour plot is pressure (ρ + T ), with contour levels of −0.2, −0.1, −0.05, −0.02, −0.005, 0, 0.005, 0.02, 0.05, 0.1 and 0.2.

Fig. 14. Schematic of the geometry and structured triangular mesh for shear-driven flow between two eccentric cylinders.

right half domain. The results at δrp = 1000 are obtained on 2400 triangles with cell size (characterized by the height of 
triangle) varying from 3 to 260 times the mean free path of gas molecules. The molecule velocity space is discretized by 
8-point Gauss-Hermite quadrature nodes in v1 and v2 directions and 12 equidistant nodes in the range of [−4, 4] in the 
v3 direction. The results at δrp = 10 are obtained on 1600 triangles with cell size varying from 0.1 to 3 times the mean free 
path of gas molecules. The molecule velocity space is discretized in the domain of [−4, 4]3 by 32 non-uniform nodes in v1
and v2 directions and 24 equidistant nodes in the v3 direction. Numerical solutions are believed to be converged when the 
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Fig. 15. Comparisons of the CIS and GSIS results for shear-driven flow between two eccentric cylinders. (a) Contours of U1 and streamlines at δrp = 1000; 
(b) Contours of U2 and streamlines at δrp = 1000; (c) Contours of U1 and streamlines at δrp = 10; (d) Contours of U2 and streamlines at δrp = 10. In 
each sub-figures, the GSIS results are plotted in the left half domain while the CIS ones are illustrated in the right half domain. In (a) and (b) the velocity 
contours obtained by only solving the Navier-Stokes equations with non-slip velocity boundary are also shown as the white dashed lines.

relative error in velocity magnitude |U | between two consecutive iteration steps is less than 10−5. The streamlines show 
that, as the gas rotates clockwise, due to the shrink of flow pass from top to bottom, part of the gas near outer surface is 
squeezed into the bottom narrow space while the other part of the gas flows back along the surface of inner cylinder; as a 
consequence a vortex appears above the inner cylinder.

Large discrepancies in the velocity contours are observed between the GSIS and CIS results at δrp = 1000. To test the 
accuracy of both schemes, we also include the results of the Navier-Stokes equations with non-slip velocity boundary con-
dition, which are illustrated by the white dashed lines in Fig. 15(a) and (b). The GSIS results overlap with the ones from 
Navier-Stokes equations, thus it is numerically proven again that GSIS can asymptotically preserve the Navier-Stokes limit. 
However, CIS cannot predict accurate solutions due to the large numerical dissipation on such a coarse mesh, i.e. the maxi-
mum cell size is about 260 times of the molecular mean free path. As the rarefaction parameter decreases to 10, both GSIS 
and CIS produce close solutions on the same fine mesh.

Consider the rate of convergence to the steady-state solution, the numbers of iteration steps and CPU time to reach 
convergence for both CIS and GSIS are tabulated in Table 2. All the cases are done in the Fortran code run in double precision 
on Intel Xeon-E5-2680 processors and 128 GB RAM and the direct sparse solver, PARDISO [57] is called to directly solve 
the linear system for macroscopic equations. The simulations are run on 12 processors using OpenMP. It is seen that GSIS 
cost only 26 iterative steps to reach the convergence criterion for both the cases of δrp = 1000 and 10, while CIS consumes 
49454 and 296 steps, respectively. Compared to that of solving the kinetic equation, the computational consumption of DG 
to solve the macroscopic equations is very small, since the number of degrees of freedom for the latter is much smaller. 
Therefore, GSIS can be nearly 1300 and 5 times faster than CIS when δrp = 1000 and 10, respectively.

6.3. Two-dimensional oscillatory Couette flow

Finally we consider the oscillatory flow in a three-dimensional cavity shown in Fig. 16(a). We assume the side length OD 
is much larger than OH and OA, so that the problem is quasi two-dimensional. The characteristic length H is chosen as the 
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Table 2
Number of iteration steps and CPU time to reach convergence for the shear-driven flow between two eccentric 
cylinders, where DG is applied to solve both kinetic equation and synthetic macroscopic equations. The in-house 
Fortran code is run in double precision on 12 Intel Xeon-E5-2680 processors using OpenMP. Note that the CIS 
solution of δrp = 1000 is not correct due to the larger dissipation that contaminates the solution.

δrp # of triangles Nv1 Nv2 Nv3 Iteration steps Total CPU time (s)

CIS GSIS CIS GSIS

1000 2400 8 × 8 × 12 49454 26 33861.2 26.3
10 1600 32 × 32 × 24 296 26 2849.8 580.3

side length OA, and the aspect ratio is defined as Asp = O H/O A. If Asp = ∞, the problem is just the oscillatory Couette 
flow between two parallel plates studied in Section 5.2. This problem is interesting because it displays a counter-intuitive 
phenomenon that the shear force exerting on the oscillating lid in two-dimensional cavity could be smaller than that of 
the one-dimensional Couette flow [52]. The full three-dimensional oscillatory flow was studied in Ref. [58], but not all the 
parameter region are covered, for example, the case with OA much larger than OA and OH.

The synthetic equations (13), (17), and (20) can be simplified to

2iStU1 + ∂σ12

∂x2
+ ∂σ13

∂x3
= 0,

iStσ12 + HoTσ12 + ∂U1

∂x2
= −δrpσ12 + 2

∫
(L − Ls)v1 v2dv,

iStσ13 + HoTσ13 + ∂U1

∂x3
= −δrpσ13 + 2

∫
(L − Ls)v1 v3dv, (64)

which leads to the following diffusion-type equation for the flow velocity U1 that is solved in a stable iterative manner:

2iSt(iSt + δ̄rp)U (k+1)
1 −

(
∂2

∂x2
2

+ ∂2

∂x3
2

)
U (k+1)

1 = Source + 2iSt(δ̄rp − δrp)U (k+1/2)
1 , (65)

where δ̄rp is given in Eq. (52), and the source term is

Source = ∂

∂x2

[
2
∫

(L(k) − L(k)
s )v1 v2dv − HoT(k+1/2)

σ12

]

+ ∂

∂x3

[
2
∫

(L(k) − L(k)
s )v1 v3dv − HoT(k+1/2)

σ13

]
. (66)

In numerical simulations, the molecular velocities v2 and v3 are discretized non-uniformly according to Eq. (42) with 48 
points in each direction, while v1 is truncated into the region of [−6, 6] and discretized by 24 uniformly-distributed points. 
Due to the symmetry h(x2, x3, v1, v2, v3) = h(x2, Asp − x3, v1, v2, −v3), we only consider the domain where 0 ≤ x2 ≤ 1 and 
0 ≤ x3 ≤ Asp/2, which are discretized by 50 and 60 points according to Eq. (44) in x1 and x2 directions, respectively. The 
velocity distribution function entering the domain from the stationary walls is zero, while that from the oscillating wall is 
2v1 feq. The diffusion-type equation (65) is approximated by the central finite difference with 5 stencils, which are directly 
solved by rewriting it in matrix form. From the inset of Fig. 16(b) we see that GSIS is very efficient as converged solutions 
are obtained within 40 iterations.

We are interested in how the average shear force exerting on the oscillating lid change with the normalized oscillation 
frequency St. Hence σ13 is not considered here as it is anti-symmetric along the line x3 = Asp/2 so its overall contribution 
to the friction is zero. The amplitude of average shear force on the oscillating lid is defined as

σ̄12 = 2| ∫ Asp/2
0 σ12(x2 = 1)dx3|

Asp
, (67)

which is shown in Fig. 16(b) for different aspect ratios of the cavity over a wide range of the oscillation frequency, when 
δrp = 50. It can be seen when Asp = 2, the average shear force is the same as that of Asp = ∞, except that it is slightly larger 
when St is small. This is seen more clearly in Fig. 16(c) that the two lateral walls, i.e. the left and right walls in Fig. 16(a), 
increase the shear stress from a nearly small constant to a high rise near the left top corner. When St increases, the shear 
stress quickly decays from the oscillating lid to the zero value at the bottom surface, and its value at the oscillating lid is 
nearly uniform, see Fig. 16(d) and (e). As the aspect ratio of the cavity reduces, the average shear force increases when St is 
small, see Fig. 16(f) for an example; this is easy to understand as the lateral walls increase the total friction according to our 
daily life experience. However, from Fig. 16(f) and (g) we can see that the shear stress quickly saturates, as larger oscillation 
frequency only slightly increases the shear stress at the lid, such that the average shear stress on the lid remains nearly 
constant over a wide range of St; and the smaller the aspect ratio is, the wider this region is. This may be useful to design a 
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Fig. 16. (a) Schematic of the oscillatory flow in a 3D rectangular cavity, where ‘O’ is the origin of the coordinate. The top lid oscillates in the x1 direction 
periodically. (b) The amplitude of shear force exerting on the oscillating lid that is normalized by the aspect ratio Asp = O H/O A, see Eq. (67); Inset shows 
the iteration number when the relative error in U1 between two consecutive iterations is less than 10−5. (c, d, e) The distribution of shear stress when 
St = 0, 10, and 50, respectively, and Asp = 2. (f, g, h) Same as (c, d, e), respectively, but with Asp = 0.05. The linearized Shakhov model is used with 
δrp = 50 in all cases.

micro-electromechanical system where the shear force remains constant in a certain wide range of oscillation frequency. It 
is this efficient algorithm allowing us to find this new phenomenon which is missed in Ref. [58]. Another counter-intuitive 
thing is that, when St is large, the average shear force at small values of cavity aspect ratio is slightly smaller than that of 
the one-dimensional cavity, although the relative difference is within 5%.

7. Conclusions and outlooks

In summary, we have developed a general synthetic iterative scheme to find the steady-state solution of the linearized 
Boltzmann equation efficiently and accurately. Various numerical results have demonstrated that our scheme is able to find 
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the converged solution within about 20 iterations at any Knudsen number, due to the fact that the synthetic macroscopic 
equations not only asymptotically preserve the Navier-Stokes limit in the framework of Chapman-Enskog expansion,2 but 
also explicitly contain the constitutive laws for the stress and heat flux at the first-order approximation in the Knudsen 
number to the linearized Boltzmann equation. As a consequence, accurate solutions that are not contaminated by numerical 
dissipation and accumulated error can be obtained when the cell size is much larger than the mean free path of gas 
molecules. Moreover, the relative error in macroscopic quantities between two consecutive iteration steps in the general 
synthetic iterative scheme decays very fast and the convergence criterion can be set at a much higher value than the 
conventional iterative scheme. These factors enable our general synthetic iterative scheme to find the steady-state solution 
in 10-ish iterations.

This paper provides a framework to solve the general linear rarefied gas flow problems. The essence of our approach 
relies on the following two points: (i) the explicit inclusion of Navier-Stokes constitutive laws and (ii) high-order terms are 
derived exactly from the gas kinetic equation. The first point ensures fast convergence in the (near) continuum flow regime, 
while the latter ensures that correct solution is obtained in transition and free-molecular flow regimes. The advantages and 
future works are highlighted and elaborated below:

1. Together with the implicit unified gas kinetic scheme and its variants [14,45,46], we conclude that in order to develop 
efficient multiscale numerical schemes, macroscopic equations must be solved together with the Boltzmann or kinetic 
model equations. While in Refs. [14,45,46] only five equations from the conservation laws are used so that complex 
flux evaluation across cell interfaces must be adopted to asymptotically preserve the Navier-Stokes limit, our general 
synthetic iterative scheme needs no complex flux evaluation as the Navier-Stokes equations are recovered explicitly. 
Thus, the numerical implementation of GSIS is much easy than UGKS and the convergence to steady-state solution is 
much faster. More importantly, our scheme does not depend on the specific form of the collision operator, while that 
in Refs. [14,45,46] relies only on the BGK-type kinetic equations to enable exact evaluation of numerical flux.

2. The gas kinetic equation and synthetic equations can be solved by sophisticated methods of computational fluid dy-
namics. For highly rarefied gas flows, the cell size is easily smaller than the mean free path and both GSIS and CIS yield 
accurate solutions. For continuum/or near-continuum flows, as long as the macroscopic solver for synthetic equations 
(essentially the NS equations) is able to capture the continuum flow behaviors, the accuracy of GSIS is guaranteed, 
that is, the numerical cell size can be much larger than the molecular mean free path. In other words, the solution of 
GSIS is not affected when gas kinetic equation and synthetic equations are discretized by different schemes, as long 
as synthetic equations capture the flow dynamics in the continuum regime. For example, in the Fourier/oscillating 
Couette/sound propagation problems, the gas kinetic equation is solved by the second-order upwind finite difference 
scheme, while the synthetic equations are solved by the central finite difference scheme.

3. Since the limitation on spatial cell size (i.e. it should be smaller than the mean free path of gas molecules) is removed 
and fast convergence is enabled, the present general synthetic iterative scheme may be applied to the low-variance [59,
60] and even frequency-domain [61] DSMC method that solves the linearized Boltzmann and kinetic model equations 
to improve the computational efficiency, especially in the near-continuum flow regime.

4. The present method can be extended to multi-species and compressible flow. The key is to construct macroscopic 
equations that recover the compressible Navier-Stokes equation to the first-order of Knudsen number. As a matter of 
fact, the Grad 13 moment equations [48,49] can be directly used if the high-order velocity moments (i.e. higher than 
the first 13 moments) are calculated from the numerical solution of the Boltzmann equation, rather than closed by 
making assumption on the form of velocity distribution function. Actually the authors have implemented the general 
synthetic iterative scheme for nonlinear Fourier heat transfer between two parallel plates with a wall temperature ratio 
of 2: started from the global equilibrium distribution, converged solution at arbitrary Knudsen number is found within 
20 iterations.

5. It is noted that recently the unified gas-kinetic wave-particle (UGKWP) method, which uses the essential idea of UGKS 
that the streaming and collision should be treated simultaneously, has been applied in the framework of DSMC to 
remove the constraint on the cell size when the Knudsen number is small [62,63]; the (ellipsoidal statistics) BGK kinetic 
model is solved and the complex and time-consuming particle sorting is used to enable the asymptotically preserving 
property. We believe that the general synthetic iterative scheme can also be applied to DSMC to remove the limitation 
on cell size and boost convergence, and the advantage is clear: GSIS relies on no specific collision operator so that it 
can be extended naturally to multi-species flows and even flows involving chemical reactions.

With this new development implemented, it is foreseen that in the near future the problem of numerical simulation 
of multiscale rarefied gas flows may be solved completely. Also, the same idea can be applied to other kinetic equations 

2 If the numerical scheme solving the gas kinetic equation is not asymptotically preserving the Navier-Stokes limit, then the solution will suffer from 
huge numerical dissipation if the cell size is much larger than the mean free path; the numerical evidence in the Fourier flow, oscillating Couette flow, 
sound propagation, and shear-driven flow between two eccentric cylinders has shown that in GSIS the cell size can be much larger than the mean free 
path to obtain accurate result, but CIS cannot. However, the rigorous proof of the asymptotically preserving property of GSIS is very difficult, and we leave 
it to future works.
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such as the Enskog equation for dense gases dynamics with applications to gas extraction in unconventional reservoirs and 
non-equilibrium evaporation and condensation at the nano scale [64–66].
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Appendix

Here, details to solve the synthetic macroscopic equations using the high-order hybridizable discontinuous Galerkin 
(HDG) method [67] on arbitrary triangular mesh are presented. The steady-state governing equations can be written in 
the following mixed form as a system of first-order equations

∇ · [Gc +Gd] = 0,

L − ∇u − � = 0,

E − ∇T − � = 0, (A.1)

where

Gc =
⎡
⎣ U

p I
0

⎤
⎦ ,

Gd =
⎡
⎢⎣

0

− 1
δrp

(
L + LT − 2

3 tr (L) I
)

− 5
4δrpPr E

⎤
⎥⎦ ,

� =
[

HoTσ11 + 1
2 HoTσ22

1
2 HoTσ12

1
2 HoTσ12

1
2 HoTσ11 + HoTσ22

]
,

� =
[

4
5 HoTq1

4
5 HoTq2

]
, (A.2)

with I being the identity matrix. The auxiliary variables L and E are introduced to approximate the combination of the 
velocity gradient ∇U , temperature gradient ∇T , and the high-order moments. Then, the stress tensor and heat flux are 
evaluated as

σi j = − 1

δrp

(
Li j + L ji − 2

3
Lkkδi j

)
, qi = − 5

4δrpPr
Ei . (A.3)

Let � ∈R2 be an two-dimensional domain with boundary ∂� in the x1 −x2 plane. Then, � is partitioned into Ne disjoint 
regular triangles �r : � = ∪Ne

r �r . The boundaries ∂�r of the triangles define a group of Nf faces �c : � = ∪Ne
r {∂�r} =

∪Nf
c {�c}. For the HDG discretization, two types of discontinuous finite element approximation space, one for solutions within 

�r and the other for traces of solution on �c , are defined as

V= {ϕ : ϕ|�i ∈PK(�r), ∀ �i ⊂ �},
W = {ψ : ψ |�c ∈PK(�c), ∀ �c ⊂ �}, (A.4)

where PK(D) denotes the space of K−th order polynomials on a domain D .
The HDG method solves the system in two steps. First, a global problem is set up to determine the traces of flow 

properties Q̂ =
[

p̂, Û , T̂
]

on the faces �. Then, a local problem with Q̂ as the boundary condition on ∂�r is solved 
element-by-element to obtain the solutions for flow properties Q = [p, U , T ], as well as the ones for the auxiliary vari-
ables L and E . Generally speaking, when moving from the interior of triangle element �r to its boundary ∂�r , the traces 
define what the values of field variables on the boundary should be. In the HDG method, it is assumed that the traces are 
singled-valued on each face.
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We introduce the notations (a,b)D = ∫
D∈R2 (a � b)dx1dx2 and 〈a, b〉D = ∫

D∈R1 (a � b)d�, where � can be either the 
dot · or tensor ⊗ product. The local problem is to find ( Q , L, E) ∈ [V]4 × [V]4 × [V]2 such that

− (Gc +Gd,∇r)�r
+ 〈F̂ · n, r〉∂�r = 0,

(L, w)�r
+ (U ,∇ · w)�r

− 〈Û , w · n〉∂�r = (w,�)�r
,

(E, z)�r
+ (T ,∇ · z)�r

− 〈T̂ , z · n〉∂�r = (z,�)�r
, (A.5)

for all (r, w, z) ∈ [V]4 × [V]4 × [V]2, where the numerical flux F̂ · n is defined as [68]

F̂ · n =

⎡
⎢⎢⎣

U

p̂ I − 1
δrp

(
L + LT − 2

3 tr (L) I
)

− 5
4δrpPr E

⎤
⎥⎥⎦ · n +

⎡
⎢⎢⎣

τ
τ
δrp

5τ
4δrpPr

⎤
⎥⎥⎦
⎡
⎢⎣

p − p̂

U − Û

T − T̂

⎤
⎥⎦ , (A.6)

with n being the outward unite normal vector of ∂�r , and τ the stabilization parameter that has important effects on the 
accuracy and convergence of the HDG method. In this work, we choose τ = 1/Hmin, where Hmin is the minimum height of 
triangles.

The global problem is set up by enforcing the continuity of the numerical fluxes over all interior faces. It is stated as: 
find Q̂ ∈ [W]4 such that

〈
(
F̂ · n

)+
,ψ〉�c + 〈

(
F̂ · n

)−
,ψ〉�c = 0, on �c ∈ �\∂�, (A.7)

for all ψ ∈ [W]4. Here the superscripts ± denote the numerical fluxes obtained from the triangles on both sides of the face. 
Note that the traces on boundary faces are calculated as

〈 Q̂ − Q +
VDF,ψ〉�c , on �c ∈ � ∩ ∂�, (A.8)

where Q +
VDF is the field solutions directly calculated from the approximated velocity distribution function according to 

Eq. (8) within the triangle where the boundary face �c belongs to.
By assembling the local problem (A.5) and global problem (A.7) and (A.8) over all triangles and faces, we can obtain a 

matrix system of the following form⎡
⎢⎢⎢⎢⎣

A Q AL AE A Q̂

B Q B L B E B Q̂

C Q CL C E C Q̂

D Q D L D E D Q̂

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
Q

L

E

Q̂

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

S Q

SL

S E

S Q̂

⎤
⎥⎥⎥⎦ , (A.9)

where Q, L, E and Q̂ are the vectors of degrees of freedom of the flow properties Q , the auxiliary variables L and E , 
and the traces of flow properties Q̂ , respectively. Note that the degrees of freedom for Q , L and E are grouped together 
and ordered element-by-element, and the corresponding coefficient matrix 

[
A Q , AL, AE ; B Q , B L, B E ; C Q , CL, C E

]
has block-

diagonal structure. Therefore, we can eliminate Q , L and E to obtain a reduced linear system involving only Q̂. Once Q̂ is 
determined, Q , L and E are reconstructed corresponding to the local problem (A.5) in an element-wise fashion, while the 
stress tensor and heat flux are calculated according to Eq. (A.3).
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